Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309

Extracellular ATP: effects, sources and fate.

J L Gordon
PMCID: PMC1153029  PMID: 3006665

Full text

PDF
319

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akasu T., Hirai K., Koketsu K. Modulatory actions of ATP on membrane potentials of bullfrog sympathetic ganglion cells. Brain Res. 1983 Jan 10;258(2):313–317. doi: 10.1016/0006-8993(83)91157-5. [DOI] [PubMed] [Google Scholar]
  2. BERNE R. M. REGULATION OF CORONARY BLOOD FLOW. Physiol Rev. 1964 Jan;44:1–29. doi: 10.1152/physrev.1964.44.1.1. [DOI] [PubMed] [Google Scholar]
  3. BINET L., BURSTEIN M. Poumon et action vasculaire de l'adénosinetriphosphate. Presse Med. 1950 Oct 28;58(68):1201–1203. [PubMed] [Google Scholar]
  4. BORN G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962 Jun 9;194:927–929. doi: 10.1038/194927b0. [DOI] [PubMed] [Google Scholar]
  5. Baer H. P., Drummond G. I. Catabolism of adenine nucleotides by the isolated perfused rat heart. Proc Soc Exp Biol Med. 1968 Jan;127(1):33–36. doi: 10.3181/00379727-127-32614. [DOI] [PubMed] [Google Scholar]
  6. Berne R. M. The role of adenosine in the regulation of coronary blood flow. Circ Res. 1980 Dec;47(6):807–813. doi: 10.1161/01.res.47.6.807. [DOI] [PubMed] [Google Scholar]
  7. Black P. H. Shedding from the cell surface of normal and cancer cells. Adv Cancer Res. 1980;32:75–199. doi: 10.1016/s0065-230x(08)60361-9. [DOI] [PubMed] [Google Scholar]
  8. Boeynaems J. M., Galand N. Stimulation of vascular prostacyclin synthesis by extracellular ADP and ATP. Biochem Biophys Res Commun. 1983 Apr 15;112(1):290–296. doi: 10.1016/0006-291x(83)91829-6. [DOI] [PubMed] [Google Scholar]
  9. Born G. V., Kratzer M. A. Source and concentration of extracellular adenosine triphosphate during haemostasis in rats, rabbits and man. J Physiol. 1984 Sep;354:419–429. doi: 10.1113/jphysiol.1984.sp015385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Born G. V. Observations on the change in shape of blood platelets brought about by adenosine diphosphate. J Physiol. 1970 Aug;209(2):487–511. doi: 10.1113/jphysiol.1970.sp009176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Born G. V., Richardson P. D. Activation time of blood platelets. J Membr Biol. 1980 Dec 15;57(2):87–90. doi: 10.1007/BF01868994. [DOI] [PubMed] [Google Scholar]
  12. Brown C. M., Burnstock G. The structural conformation of the polyphosphate chain of the ATP molecule is critical for its promotion of prostaglandin biosynthesis. Eur J Pharmacol. 1981 Jan 5;69(1):81–86. doi: 10.1016/0014-2999(81)90604-x. [DOI] [PubMed] [Google Scholar]
  13. Brown C., Burnstock G., Cocks T. Effects of adenosine 5'-triphosphate (ATP) and beta-gamma-methylene ATP on the rat urinary bladder. Br J Pharmacol. 1979 Jan;65(1):97–102. doi: 10.1111/j.1476-5381.1979.tb17337.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Burgess G. M., Claret M., Jenkinson D. H. Effects of catecholamines, ATP and ionophore A23187 on potassium and calcium movements in isolated hepatocytes. Nature. 1979 Jun 7;279(5713):544–546. doi: 10.1038/279544a0. [DOI] [PubMed] [Google Scholar]
  15. Burgess G. M., Claret M., Jenkinson D. H. Effects of quinine and apamin on the calcium-dependent potassium permeability of mammalian hepatocytes and red cells. J Physiol. 1981 Aug;317:67–90. doi: 10.1113/jphysiol.1981.sp013814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Burnstock G. Comparative studies of purinergic nerves. J Exp Zool. 1975 Oct;194(1):103–133. doi: 10.1002/jez.1401940108. [DOI] [PubMed] [Google Scholar]
  17. Burnstock G., Cusack N. J., Hills J. M., MacKenzie I., Meghji P. Studies on the stereoselectivity of the P2-purinoceptor. Br J Pharmacol. 1983 Aug;79(4):907–913. doi: 10.1111/j.1476-5381.1983.tb10535.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Burnstock G., Cusack N. J., Meldrum L. A. Effects of phosphorothioate analogues of ATP, ADP and AMP on guinea-pig taenia coli and urinary bladder. Br J Pharmacol. 1984 Jun;82(2):369–374. doi: 10.1111/j.1476-5381.1984.tb10771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Burnstock G., Cusack N. J., Meldrum L. A. Studies on the stereoselectivity of the P2-purinoceptor on the guinea-pig vas deferens. Br J Pharmacol. 1985 Feb;84(2):431–434. doi: 10.1111/j.1476-5381.1985.tb12927.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Burnstock G., Kennedy C. Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 1985;16(5):433–440. doi: 10.1016/0306-3623(85)90001-1. [DOI] [PubMed] [Google Scholar]
  21. Burnstock G., Meghji P. Distribution of P1- and P2-purinoceptors in the guinea-pig and frog heart. Br J Pharmacol. 1981 Aug;73(4):879–885. doi: 10.1111/j.1476-5381.1981.tb08741.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Burnstock G. Neural nomenclature. Nature. 1971 Jan 22;229(5282):282–283. doi: 10.1038/229282d0. [DOI] [PubMed] [Google Scholar]
  23. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
  24. Cameron D. J. Inhibition of macrophage mediated cytotoxicity by exogenous adenosine 5'-triphosphate. J Clin Lab Immunol. 1984 Dec;15(4):215–218. [PubMed] [Google Scholar]
  25. Chapal J., Loubatieres-Mariani M. M. Evidence for purinergic receptors on vascular smooth muscle in rat pancreas. Eur J Pharmacol. 1983 Mar 4;87(4):423–430. doi: 10.1016/0014-2999(83)90081-x. [DOI] [PubMed] [Google Scholar]
  26. Chaudry I. H., Sayeed M. M., Baue A. E. Effect of adenosine triphosphate-magnesium chloride administration in shock. Surgery. 1974 Feb;75(2):220–227. [PubMed] [Google Scholar]
  27. Clemens M. G., Forrester T. Appearance of adenosine triphosphate in the coronary sinus effluent from isolated working rat heart in response to hypoxia. J Physiol. 1981 Mar;312:143–158. doi: 10.1113/jphysiol.1981.sp013621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Cockcroft S., Gomperts B. D. Activation and inhibition of calcium-dependent histamine secretion by ATP ions applied to rat mast cells. J Physiol. 1979 Nov;296:229–243. doi: 10.1113/jphysiol.1979.sp013002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Cockcroft S., Gomperts B. D. The ATP4- receptor of rat mast cells. Biochem J. 1980 Jun 15;188(3):789–798. doi: 10.1042/bj1880789. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Collis M. G., Pettinger S. J. Can ATP stimulate P1-receptors in guinea-pig atrium without conversion to adenosine? Eur J Pharmacol. 1982 Jul 30;81(4):521–529. doi: 10.1016/0014-2999(82)90341-7. [DOI] [PubMed] [Google Scholar]
  31. Cooper D. R., Lewis G. P., Lieberman G. E., Webb H., Westwick J. ADP metabolism in vascular tissue, a possible thrombo-regulatory mechanism. Thromb Res. 1979;14(6):901–914. doi: 10.1016/0049-3848(79)90008-2. [DOI] [PubMed] [Google Scholar]
  32. Crutchley D. J., Eling T. E., Anderson M. W. ADPase activity of isolated perfused rat lung. Life Sci. 1978 Apr 24;22(16):1413–1420. doi: 10.1016/0024-3205(78)90635-5. [DOI] [PubMed] [Google Scholar]
  33. Crutchley D. J., Ryan U. S., Ryan J. W. Effects of aspirin and dipyridamole on the degradation of adenosine diphosphate by cultured cells derived from bovine pulmonary artery. J Clin Invest. 1980 Jul;66(1):29–35. doi: 10.1172/JCI109831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Cusack N. J., Hickman M. E., Born G. V. Effects of D- and L- enantiomers of adenosine, AMP and ADP and their 2-chloro- and 2-azido- analogues on human platelets. Proc R Soc Lond B Biol Sci. 1979 Nov 30;206(1163):139–144. doi: 10.1098/rspb.1979.0097. [DOI] [PubMed] [Google Scholar]
  35. Cusack N. J., Hourani S. M. Effects of RP and SP diastereoisomers of adenosine 5'-O-(1-thiodiphosphate) on human platelets. Br J Pharmacol. 1981 Jun;73(2):409–412. doi: 10.1111/j.1476-5381.1981.tb10437.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Cusack N. J., Hourani S. M. Some pharmacological and biochemical interactions of the enantiomers of adenylyl 5'-(beta, gamma-methylene)-diphosphonate with the guinea-pig urinary bladder. Br J Pharmacol. 1984 May;82(1):155–159. doi: 10.1111/j.1476-5381.1984.tb16453.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Cusack N. J., Pearson J. D., Gordon J. L. Stereoselectivity of ectonucleotidases on vascular endothelial cells. Biochem J. 1983 Sep 15;214(3):975–981. doi: 10.1042/bj2140975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Cusack N. J., Planker M. Relaxation of isolated taenia coli of guinea-pig by enantiomers of 2-azido analogues of adenosine and adenine nucleotides. Br J Pharmacol. 1979 Sep;67(1):153–158. [PMC free article] [PubMed] [Google Scholar]
  39. DUFF F., PATTERSON G. C., SHEPHERD J. T. A quantitative study of the response to adenosine triphosphate of the blood vessels of the human hand and forearm. J Physiol. 1954 Sep 28;125(3):581–589. doi: 10.1113/jphysiol.1954.sp005182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Dahlquist R., Diamant B. Interaction of ATP and calcium on the rat mast cell: effect on histamine release. Acta Pharmacol Toxicol (Copenh) 1974 May;34(5):368–384. doi: 10.1111/j.1600-0773.1974.tb03533.x. [DOI] [PubMed] [Google Scholar]
  41. Dahlén S. E., Hedqvist P. ATP, beta-gamma-methylene-ATP, and adenosine inhibit non-cholinergic non-adrenergic transmission in rat urinary bladder. Acta Physiol Scand. 1980 Jun;109(2):137–142. doi: 10.1111/j.1748-1716.1980.tb06578.x. [DOI] [PubMed] [Google Scholar]
  42. Dicker P., Heppel L. A., Rozengurt E. Control of membrane permeability by external and internal ATP in 3T6 cells grown in serum-free medium. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2103–2107. doi: 10.1073/pnas.77.4.2103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Dosne A. M., Legrand C., Bauvois B., Bodevin E., Caen J. P. Comparative degradation of adenylnucleotides by cultured endothelial cells and fibroblasts. Biochem Biophys Res Commun. 1978 Nov 14;85(1):183–189. doi: 10.1016/s0006-291x(78)80027-8. [DOI] [PubMed] [Google Scholar]
  44. Drury A. N., Szent-Györgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929 Nov 25;68(3):213–237. doi: 10.1113/jphysiol.1929.sp002608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Dvorak H. F., Quay S. C., Orenstein N. S., Dvorak A. M., Hahn P., Bitzer A. M., Carvalho A. C. Tumor shedding and coagulation. Science. 1981 May 22;212(4497):923–924. doi: 10.1126/science.7195067. [DOI] [PubMed] [Google Scholar]
  46. Ellison J. P., Hibbs R. G. An ultrastructural study of mammalian cardiac ganglia. J Mol Cell Cardiol. 1976 Feb;8(2):89–101. doi: 10.1016/0022-2828(76)90023-7. [DOI] [PubMed] [Google Scholar]
  47. Fedan J. S., Hogaboom G. K., Westfall D. P., O'Donnell J. P. Comparison of contractions of the smooth muscle of the guinea-pig vas deferens induced by ATP and related nucleotides. Eur J Pharmacol. 1982 Jul 9;81(2):193–204. doi: 10.1016/0014-2999(82)90437-x. [DOI] [PubMed] [Google Scholar]
  48. Forrester T. An estimate of adenosine triphosphate release into the venous effluent from exercising human forearm muscle. J Physiol. 1972 Aug;224(3):611–628. doi: 10.1113/jphysiol.1972.sp009915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Forrester T., Harper A. M., MacKenzie E. T., Thomson E. M. Effect of adenosine triphosphate and some derivatives on cerebral blood flow and metabolism. J Physiol. 1979 Nov;296:343–355. doi: 10.1113/jphysiol.1979.sp013009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Forrester T., Lind A. R. Identification of adenosine triphosphate in human plasma and the concentration in the venous effluent of forearm muscles before, during and after sustained contractions. J Physiol. 1969 Oct;204(2):347–364. doi: 10.1113/jphysiol.1969.sp008917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Forrester T., Williams C. A. Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J Physiol. 1977 Jun;268(2):371–390. doi: 10.1113/jphysiol.1977.sp011862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Fredholm B. B., Hedqvist P., Lindström K., Wennmalm M. Release of nucleosides and nucleotides from the rabbit heart by sympathetic nerve stimulation. Acta Physiol Scand. 1982 Nov;116(3):285–295. doi: 10.1111/j.1748-1716.1982.tb07142.x. [DOI] [PubMed] [Google Scholar]
  53. Furchgott R. F., Zawadzki J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980 Nov 27;288(5789):373–376. doi: 10.1038/288373a0. [DOI] [PubMed] [Google Scholar]
  54. Furness J. B., Costa M. The nervous release and the action of substances which affect intestinal muscle through neither adrenoreceptors nor cholinoreceptors. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):123–133. doi: 10.1098/rstb.1973.0015. [DOI] [PubMed] [Google Scholar]
  55. Fyffe R. E., Perl E. R. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci U S A. 1984 Nov;81(21):6890–6893. doi: 10.1073/pnas.81.21.6890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Gallacher D. V. Are there purinergic receptors on parotid acinar cells? Nature. 1982 Mar 4;296(5852):83–86. doi: 10.1038/296083a0. [DOI] [PubMed] [Google Scholar]
  57. George J. N., Thoi L. L., McManus L. M., Reimann T. A. Isolation of human platelet membrane microparticles from plasma and serum. Blood. 1982 Oct;60(4):834–840. [PubMed] [Google Scholar]
  58. Glasgow J. G., Schade R., Pitlick F. A. Evidence that ADP hydrolysis by human cells is related to thrombogenic potential1. Thromb Res. 1978 Aug;13(2):255–266. doi: 10.1016/0049-3848(78)90013-0. [DOI] [PubMed] [Google Scholar]
  59. Gordon J. L., Martin W. Endothelium-dependent relaxation of the pig aorta: relationship to stimulation of 86Rb efflux from isolated endothelial cells. Br J Pharmacol. 1983 Jun;79(2):531–541. doi: 10.1111/j.1476-5381.1983.tb11028.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Gough G. R., Maguire M. H., Satchell D. G. Three new adenosine triphosphate analogs. Synthesis and effects on isolated gut. J Med Chem. 1973 Oct;16(10):1188–1190. doi: 10.1021/jm00268a028. [DOI] [PubMed] [Google Scholar]
  61. Gough G., Maguire M. H., Penglis F. Analogues of adenosine 5'-diphosphate-new platelet aggregators. Influence of purine ring and and phosphate chain substitutions on the platelet-aggregating potency of adenosine 5'-diphosphate. Mol Pharmacol. 1972 Mar;8(2):170–177. [PubMed] [Google Scholar]
  62. Gregory S., Kern M. Adenosine and adenine nucleotides are mitogenic for mouse thymocytes. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1111–1116. doi: 10.1016/0006-291x(78)91510-3. [DOI] [PubMed] [Google Scholar]
  63. Griffith T. M., Edwards D. H., Lewis M. J., Newby A. C., Henderson A. H. The nature of endothelium-derived vascular relaxant factor. Nature. 1984 Apr 12;308(5960):645–647. doi: 10.1038/308645a0. [DOI] [PubMed] [Google Scholar]
  64. Guccione M. A., Packham M. A., Kinlough-Rathbone R. L., Mustard J. F. Reactions of 14C-ADP and 14C-ATP with washed platelets from rabbits. Blood. 1971 May;37(5):542–555. [PubMed] [Google Scholar]
  65. HILLARP N. A. The release of catechol amines from the amine containing granules of the adrenal medulla. Acta Physiol Scand. 1958 Oct 8;43(3-4):292–302. doi: 10.1111/j.1748-1716.1958.tb01596.x. [DOI] [PubMed] [Google Scholar]
  66. HOLTON P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959 Mar 12;145(3):494–504. doi: 10.1113/jphysiol.1959.sp006157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Haslam R. J. Interactions of the pharmacological receptors of blood platelets with adenylate cyclase. Ser Haematol. 1973;6(3):333–350. [PubMed] [Google Scholar]
  68. Henon B. K., McAfee D. A. The ionic basis of adenosine receptor actions on post-ganglionic neurones in the rat. J Physiol. 1983 Mar;336:607–620. doi: 10.1113/jphysiol.1983.sp014600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Hogaboom G. K., O'Donnell J. P., Fedan J. S. Purinergic receptors: photoaffinity analog of adenosine triphosphate is a specific adenosine triphosphate antagonist. Science. 1980 Jun 13;208(4449):1273–1276. doi: 10.1126/science.6103581. [DOI] [PubMed] [Google Scholar]
  70. Hourani S. M., Welford L. A., Cusack N. J. L-AMP-PCP, an ATP receptor agonist in guinea-pig bladder, is inactive on taenia coli. Eur J Pharmacol. 1985 Jan 22;108(2):197–200. doi: 10.1016/0014-2999(85)90726-5. [DOI] [PubMed] [Google Scholar]
  71. Hugues M., Romey G., Duval D., Vincent J. P., Lazdunski M. Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci U S A. 1982 Feb;79(4):1308–1312. doi: 10.1073/pnas.79.4.1308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Ikehara S., Pahwa R. N., Lunzer D. G., Good R. A., Modak M. J. Adenosine-5'-triphosphate-(ATP) mediated stimulation and suppression of DNA synthesis in lymphoid cells. I. Characterization of ATP responsive cells in mouse lymphoid organs. J Immunol. 1981 Nov;127(5):1834–1838. [PubMed] [Google Scholar]
  73. Ingerman C. M., Smith J. B., Silver M. J. Direct measurement of platelet secretion in whole blood. Thromb Res. 1979;16(3-4):335–344. doi: 10.1016/0049-3848(79)90081-1. [DOI] [PubMed] [Google Scholar]
  74. Israël M., Lesbats B., Meunier F. M., Stinnakre J. Postsynaptic release of adenosine triphosphate induced by single impulse transmitter action. Proc R Soc Lond B Biol Sci. 1976 Jun 30;193(1113):461–468. doi: 10.1098/rspb.1976.0058. [DOI] [PubMed] [Google Scholar]
  75. Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
  76. Jenkinson D. H., Haylett D. G., Cook N. S. Calcium-activated potassium channels in liver cells. Cell Calcium. 1983 Dec;4(5-6):429–437. doi: 10.1016/0143-4160(83)90019-2. [DOI] [PubMed] [Google Scholar]
  77. Johnson V. E., Hilton P. J. Frusemide-sensitive sodium and potassium transport by human leucocytes. Clin Sci (Lond) 1985 Jan;68(1):89–91. doi: 10.1042/cs0680089. [DOI] [PubMed] [Google Scholar]
  78. Kang E. S., Gates R. E., Chiang T. M., Kang A. H. Ectoprotein kinase activity of the isolated rat adipocyte. Biochem Biophys Res Commun. 1979 Feb 14;86(3):769–778. doi: 10.1016/0006-291x(79)91779-0. [DOI] [PubMed] [Google Scholar]
  79. Kennedy C., Burnstock G. ATP produces vasodilation via P1 purinoceptors and vasoconstriction via P2 purinoceptors in the isolated rabbit central ear artery. Blood Vessels. 1985;22(3):145–155. doi: 10.1159/000158592. [DOI] [PubMed] [Google Scholar]
  80. Kennedy C., Burnstock G. Evidence for two types of P2-purinoceptor in longitudinal muscle of the rabbit portal vein. Eur J Pharmacol. 1985 Apr 23;111(1):49–56. doi: 10.1016/0014-2999(85)90112-8. [DOI] [PubMed] [Google Scholar]
  81. Kennedy C., Delbro D., Burnstock G. P2-purinoceptors mediate both vasodilation (via the endothelium) and vasoconstriction of the isolated rat femoral artery. Eur J Pharmacol. 1985 Jan 2;107(2):161–168. doi: 10.1016/0014-2999(85)90055-x. [DOI] [PubMed] [Google Scholar]
  82. Kreutzberg G. W., Barron K. D., Schubert P. Cytochemical localization of 5'-nucleotidase in glial plasma membranes. Brain Res. 1978 Dec 15;158(2):247–257. doi: 10.1016/0006-8993(78)90672-8. [DOI] [PubMed] [Google Scholar]
  83. Ku D. D. Coronary vascular reactivity after acute myocardial ischemia. Science. 1982 Nov 5;218(4572):576–578. doi: 10.1126/science.7123259. [DOI] [PubMed] [Google Scholar]
  84. Kübler D., Pyerin W., Kinzel V. Protein kinase activity and substrates at the surface of intact HeLa cells. J Biol Chem. 1982 Jan 10;257(1):322–329. [PubMed] [Google Scholar]
  85. LeRoy E. C., Ager A., Gordon J. L. Effects of neutrophil elastase and other proteases on porcine aortic endothelial prostaglandin I2 production, adenine nucleotide release, and responses to vasoactive agents. J Clin Invest. 1984 Sep;74(3):1003–1010. doi: 10.1172/JCI111467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Lieberman G. E., Lewis G. P., Peters T. J. A membrane-bound enzyme in rabbit aorta capable of inhibiting adenosine-diphosphate-induced platelet aggregation. Lancet. 1977 Aug 13;2(8033):330–332. doi: 10.1016/s0140-6736(77)91488-x. [DOI] [PubMed] [Google Scholar]
  87. Lollar P., Owen W. G. Active-site-dependent, thrombin-induced release of adenine nucleotides from cultured human endothelial cells. Ann N Y Acad Sci. 1981;370:51–56. doi: 10.1111/j.1749-6632.1981.tb29720.x. [DOI] [PubMed] [Google Scholar]
  88. Loubatieres-Mariani M. M., Chapal J., Lignon F., Valette G. Structural specificity of nucleotides for insulin secretory action from the isolated perfused rat pancreas. Eur J Pharmacol. 1979 Nov 16;59(3-4):277–286. doi: 10.1016/0014-2999(79)90291-7. [DOI] [PubMed] [Google Scholar]
  89. Lush D. J., Munday K. A., Noble A. R. Furosemide fails to alter plasma active or inactive renin in conscious sheep but does so in anaesthetized animals. J Physiol. 1983 Jul;340:57–75. doi: 10.1113/jphysiol.1983.sp014749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Macfarlane D. E., Mills D. C. The effects of ATP on platelets: evidence against the central role of released ADP in primary aggregation. Blood. 1975 Sep;46(3):309–320. [PubMed] [Google Scholar]
  91. Macfarlane D. E., Srivastava P. C., Mills D. C. 2-Methylthioadenosine[beta-32P]diphosphate. An agonist and radioligand for the receptor that inhibits the accumulation of cyclic AMP in intact blood platelets. J Clin Invest. 1983 Mar;71(3):420–428. doi: 10.1172/JCI110786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Maguire M. H., Satchell D. G. The contribution of adenosine to the inhibitory actions of adenine nucleotides on the guinea-pig taenia coli: studies with phosphate-modified adenine nucleotide analogs and dipyridamole. J Pharmacol Exp Ther. 1979 Dec;211(3):626–631. [PubMed] [Google Scholar]
  93. Martin W., Cusack N. J., Carleton J. S., Gordon J. L. Specificity of P2-purinoceptor that mediates endothelium-dependent relaxation of the pig aorta. Eur J Pharmacol. 1985 Feb 5;108(3):295–299. doi: 10.1016/0014-2999(85)90452-2. [DOI] [PubMed] [Google Scholar]
  94. Meghji P., Burnstock G. The effects of adenyl compounds on the heart of the axolotl (Ambystoma mexicanum). Comp Biochem Physiol C. 1983;76(2):319–326. doi: 10.1016/0742-8413(83)90085-3. [DOI] [PubMed] [Google Scholar]
  95. Moody C. J., Meghji P., Burnstock G. Stimulation of P1-purinoceptors by ATP depends partly on its conversion to AMP and adenosine and partly on direct action. Eur J Pharmacol. 1984 Jan 13;97(1-2):47–54. doi: 10.1016/0014-2999(84)90511-9. [DOI] [PubMed] [Google Scholar]
  96. Needleman P., Minkes M. S., Douglas J. R., Jr Stimulation of prostaglandin biosynthesis by adenine nucleotides. Profile of prostaglandin release by perfused organs. Circ Res. 1974 Apr;34(4):455–460. doi: 10.1161/01.res.34.4.455. [DOI] [PubMed] [Google Scholar]
  97. Ohkawa M., Chaudry I. H., Clemens M. G., Baue A. E. ATP-MgCl2 produces sustained improvement in hepatic mitochondrial function and blood flow after hepatic ischemia. J Surg Res. 1984 Sep;37(3):226–234. doi: 10.1016/0022-4804(84)90183-5. [DOI] [PubMed] [Google Scholar]
  98. Paddle B. M., Burnstock G. Release of ATP from perfused heart during coronary vasodilatation. Blood Vessels. 1974;11(3):110–119. doi: 10.1159/000158005. [DOI] [PubMed] [Google Scholar]
  99. Pearson J. D., Carleton J. S., Gordon J. L. Metabolism of adenine nucleotides by ectoenzymes of vascular endothelial and smooth-muscle cells in culture. Biochem J. 1980 Aug 15;190(2):421–429. doi: 10.1042/bj1900421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Pearson J. D., Cusack N. J. Investigation of the preferred Mg(II)-adenine-nucleotide complex at the active site of ectonucleotidases in intact vascular cells using phosphorothioate analogues of ADP and ATP. Eur J Biochem. 1985 Sep 2;151(2):373–375. doi: 10.1111/j.1432-1033.1985.tb09111.x. [DOI] [PubMed] [Google Scholar]
  101. Pearson J. D., Gordon J. L. Nucleotide metabolism by endothelium. Annu Rev Physiol. 1985;47:617–627. doi: 10.1146/annurev.ph.47.030185.003153. [DOI] [PubMed] [Google Scholar]
  102. Pearson J. D., Gordon J. L. Vascular endothelial and smooth muscle cells in culture selectively release adenine nucleotides. Nature. 1979 Oct 4;281(5730):384–386. doi: 10.1038/281384a0. [DOI] [PubMed] [Google Scholar]
  103. Pearson J. D., Slakey L. L., Gordon J. L. Stimulation of prostaglandin production through purinoceptors on cultured porcine endothelial cells. Biochem J. 1983 Jul 15;214(1):273–276. doi: 10.1042/bj2140273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Penttila A., Trump B. F. Extracellular acidosis protects Ehrlich ascites tumor cells and rat renal cortex against anoxic injury. Science. 1974 Jul 19;185(4147):277–278. doi: 10.1126/science.185.4147.277. [DOI] [PubMed] [Google Scholar]
  105. Potter D. D., Furshpan E. J., Landis S. C. Transmitter status in cultured rat sympathetic neurons: plasticity and multiple function. Fed Proc. 1983 Apr;42(6):1626–1632. [PubMed] [Google Scholar]
  106. Rapoport R. M., Murad F. Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res. 1983 Mar;52(3):352–357. doi: 10.1161/01.res.52.3.352. [DOI] [PubMed] [Google Scholar]
  107. Remold-O'Donnell E. Protein kinase activity associated with the surface of guinea pig macrophages. J Exp Med. 1978 Oct 1;148(4):1099–1104. doi: 10.1084/jem.148.4.1099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Rozengurt E., Heppel L. A. Reciprocal control of membrane permeability of transformed cultures of mouse cell lines by external and internal ATP. J Biol Chem. 1979 Feb 10;254(3):708–714. [PubMed] [Google Scholar]
  109. Rutherford A., Burnstock G. Neuronal and non-neuronal components in the overflow of labelled adenyl compounds from guinea-pig taenia coli. Eur J Pharmacol. 1978 Mar 15;48(2):195–202. doi: 10.1016/0014-2999(78)90328-x. [DOI] [PubMed] [Google Scholar]
  110. Ryan J. W., Smith U. Metabolism of adenosine 5'-monophosphate during circulation through the lungs. Trans Assoc Am Physicians. 1971;84:297–306. [PubMed] [Google Scholar]
  111. Ryan U. S. Structural bases for metabolic activity. Annu Rev Physiol. 1982;44:223–239. doi: 10.1146/annurev.ph.44.030182.001255. [DOI] [PubMed] [Google Scholar]
  112. Salt T. E., Hill R. G. Excitation of single sensory neurones in the rat caudal trigeminal nucleus by iontophoretically applied adenosine 5'-triphosphate. Neurosci Lett. 1983 Jan 31;35(1):53–57. doi: 10.1016/0304-3940(83)90526-8. [DOI] [PubMed] [Google Scholar]
  113. Satchell D. G., Burnstock G. Comparison of the inhibitory effects on the guinea-pig taenia coli of adenine nucleotides and adenosine in the presence and absence of dipyridamole. Eur J Pharmacol. 1975 Jun-Jul;32(02):324–328. doi: 10.1016/0014-2999(75)90299-x. [DOI] [PubMed] [Google Scholar]
  114. Satchell D. G., Maguire M. H. Inhibitory effects of adenine nucleotide analogs on the isolated guinea-pig taenia coli. J Pharmacol Exp Ther. 1975 Dec;195(3):540–548. [PubMed] [Google Scholar]
  115. Schmidt A., Ortaldo J. R., Herberman R. B. Inhibition of human natural killer cell reactivity by exogenous adenosine 5'-triphosphate. J Immunol. 1984 Jan;132(1):146–150. [PubMed] [Google Scholar]
  116. Schwartzman M., Pinkas R., Raz A. Evidence for different purinergic receptors for ATP and ADP in rabbit kidney and heart. Eur J Pharmacol. 1981 Sep 11;74(2-3):167–173. doi: 10.1016/0014-2999(81)90527-6. [DOI] [PubMed] [Google Scholar]
  117. Silinsky E. M., Ginsborg B. L. Inhibition of acetylcholine release from preganglionic frog nerves by ATP but not adenosine. Nature. 1983 Sep 22;305(5932):327–328. doi: 10.1038/305327a0. [DOI] [PubMed] [Google Scholar]
  118. Smith U., Ryan J. W. Electron microscopy of endothelial and epithelial components of the lungs: correlations of structure and function. Fed Proc. 1973 Sep;32(9):1957–1966. [PubMed] [Google Scholar]
  119. Sneddon P., Burnstock G. ATP as a co-transmitter in rat tail artery. Eur J Pharmacol. 1984 Oct 30;106(1):149–152. doi: 10.1016/0014-2999(84)90688-5. [DOI] [PubMed] [Google Scholar]
  120. Sneddon P., Burnstock G. Inhibition of excitatory junction potentials in guinea-pig vas deferens by alpha, beta-methylene-ATP: further evidence for ATP and noradrenaline as cotransmitters. Eur J Pharmacol. 1984 Apr 13;100(1):85–90. doi: 10.1016/0014-2999(84)90318-2. [DOI] [PubMed] [Google Scholar]
  121. Sommarin M., Henriksson T., Jergil B. Cyclic AMP-dependent protein phosphorylation on the surface of rat hepatocytes. FEBS Lett. 1981 May 18;127(2):285–289. doi: 10.1016/0014-5793(81)80225-6. [DOI] [PubMed] [Google Scholar]
  122. Stanley K. K., Edwards M. R., Luzio J. P. Subcellular distribution and movement of 5'-nucleotidase in rat cells. Biochem J. 1980 Jan 15;186(1):59–69. doi: 10.1042/bj1860059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Stone T. W. Physiological roles for adenosine and adenosine 5'-triphosphate in the nervous system. Neuroscience. 1981;6(4):523–555. doi: 10.1016/0306-4522(81)90145-7. [DOI] [PubMed] [Google Scholar]
  124. Stone T. W., Taylor D. A. Antagonism by clonidine of neuronal depressant responses to adenosine, adenosine-5'-monophosphate and adenosine triphosphate. Br J Pharmacol. 1978 Nov;64(3):369–374. doi: 10.1111/j.1476-5381.1978.tb08659.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Trams E. G. A proposal for the role of ecto-enzymes and adenylates in traumatic shock. J Theor Biol. 1980 Dec 7;87(3):609–621. doi: 10.1016/0022-5193(80)90239-8. [DOI] [PubMed] [Google Scholar]
  126. Trams E. G. Evidence for ATP action on the cell surface. Nature. 1974 Dec 6;252(5483):480–482. doi: 10.1038/252480a0. [DOI] [PubMed] [Google Scholar]
  127. Trams E. G., Lauter C. J. On the sidedness of plasma membrane enzymes. Biochim Biophys Acta. 1974 Apr 29;345(2):180–197. doi: 10.1016/0005-2736(74)90257-0. [DOI] [PubMed] [Google Scholar]
  128. Van Coevorden A., Boeynaems J. M. Physiological concentrations of ADP stimulate the release of prostacyclin from bovine aortic endothelial cells. Prostaglandins. 1984 Apr;27(4):615–626. doi: 10.1016/0090-6980(84)90097-2. [DOI] [PubMed] [Google Scholar]
  129. WILLIAMSON J. R., DIPIETRO D. L. EVIDENCE FOR EXTRACELLULAR ENZYMIC ACTIVITY OF THE ISOLATED PERFUSED RAT HEART. Biochem J. 1965 Apr;95:226–232. doi: 10.1042/bj0950226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. WOLF M. M., BERNE R. M. Coronary vasodilator properties of purine and pyrimidine derivatives. Circ Res. 1956 May;4(3):343–348. doi: 10.1161/01.res.4.3.343. [DOI] [PubMed] [Google Scholar]
  131. Weisman G. A., Dunn S. D., De B. K., Kitagawa T., Friedberg I. On the role of protein phosphorylation in the ATP-dependent permeabilization of transformed cells. J Cell Physiol. 1984 Feb;118(2):124–132. doi: 10.1002/jcp.1041180204. [DOI] [PubMed] [Google Scholar]
  132. Westfall D. P., Stitzel R. E., Rowe J. N. The postjunctional effects and neural release of purine compounds in the guinea-pig vas deferens. Eur J Pharmacol. 1978 Jul 1;50(1):27–38. doi: 10.1016/0014-2999(78)90250-9. [DOI] [PubMed] [Google Scholar]
  133. Woo Y. T., Manery J. F. 5'-nucleotidase: an ecto-enzyme of frog skeletal muscle. Biochim Biophys Acta. 1975 Jul 27;397(1):144–152. doi: 10.1016/0005-2744(75)90188-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES