Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 15;212(3):539–547. doi: 10.1042/bj2120539

Comparative studies on the cumene hydroperoxide- and NADPH-supported N-oxidation of 4-chloroaniline by cytochrome P-450.

P Hlavica, I Golly, J Mietaschk
PMCID: PMC1153127  PMID: 6882382

Abstract

The present study confirms that cytochrome P-450 can act as a catalyst in the cumene hydroperoxide-supported N-oxidation of 4-chloroaniline. Analogous to the NADPH/O2-driven N-oxidation process, product dissociation is likely to limit the overall rate of cytochrome P-450 cycling also in the peroxidatic pathway. The oxy complexes involved in either metabolic route differ with respect to stability, spectral properties and need for thiolate-mediated resonance stabilization. With the organic hydroperoxide, the metabolic profile is shifted from the preponderant production of N-(4-chlorophenyl)hydroxylamine to the formation of 1-chloro-4-nitrobenzene. This finding suggests that the peroxide-sustained N-oxidation mechanism differs in several ways from that functional in the NADPH/O2-dependent oxenoid reaction. Thus one-electron oxidation, triggered by homolytic cleavage of the oxygen donor, is proposed as the mechanism of peroxidatic transformation of 4-chloroaniline.

Full text

PDF
542

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akhrem A. A., Bokut S. B., Metelitza D. I. Kinetics of cumene hydroperoxide-dependent aniline hydroxylation involving cytochrome P-450 in microsomal and solubilized forms. Biochem Biophys Res Commun. 1977 Jul 11;77(1):20–27. doi: 10.1016/s0006-291x(77)80159-9. [DOI] [PubMed] [Google Scholar]
  2. Autor A. P., Kaschnitz R. M., Heidema J. K., Coon M. J. Sedimentation and other properties of the reconstituted liver microsomal mixed-function oxidase system containing cytochrome P-450, reduced triphosphopyridine nucleotide-cytochrome P-450 reductase, and phosphatidylcholine. Mol Pharmacol. 1973 Jan;9(1):93–104. [PubMed] [Google Scholar]
  3. Bartsch H., Hecker E. On the metabolic activation of the carcinogen N-hydroxy-N-2-acetylaminofluorene. 3. Oxidation with horseradish peroxidase to yield 2-nitrosofluorene and N-acetoxy-N-2-acetylaminofluorene. Biochim Biophys Acta. 1971 Jun 22;237(3):567–578. doi: 10.1016/0304-4165(71)90277-7. [DOI] [PubMed] [Google Scholar]
  4. Blake R. C., 2nd, Coon M. J. On the mechanism of action of cytochrome P-450. Evaluation of homolytic and heterolytic mechanisms of oxygen-oxygen bond cleavage during substrate hydroxylation by peroxides. J Biol Chem. 1981 Dec 10;256(23):12127–12133. [PubMed] [Google Scholar]
  5. Blake R. C., 2nd, Coon M. J. On the mechanism of action of cytochrome P-450. Role of peroxy spectral intermediates in substrate hydroxylation. J Biol Chem. 1981 Jun 10;256(11):5755–5763. [PubMed] [Google Scholar]
  6. Dignam J. D., Strobel H. W. NADPH-cytochrome P-450 reductase from rat liver: purification by affinity chromatography and characterization. Biochemistry. 1977 Mar 22;16(6):1116–1123. doi: 10.1021/bi00625a014. [DOI] [PubMed] [Google Scholar]
  7. Estabrook R. W., Hildebrandt A. G., Baron J., Netter K. J., Leibman K. A new spectral intermediate associated with cytochrome P-450 function in liver microsomes. Biochem Biophys Res Commun. 1971 Jan 8;42(1):132–139. doi: 10.1016/0006-291x(71)90372-x. [DOI] [PubMed] [Google Scholar]
  8. Guengerich F. P., Ballou D. P., Coon M. J. Spectral intermediates in the reaction of oxygen with purified liver microsomal cytochrome P-450. Biochem Biophys Res Commun. 1976 Jun 7;70(3):951–956. doi: 10.1016/0006-291x(76)90684-7. [DOI] [PubMed] [Google Scholar]
  9. HERR F., KIESE M. Bestimmung von Nitrosobenzol im Blute. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1959;235(4):351–353. [PubMed] [Google Scholar]
  10. Hlavica P. Biological oxidation of nitrogen in organic compounds and disposition of N-oxidized products. CRC Crit Rev Biochem. 1982;12(1):39–101. doi: 10.3109/10409238209105850. [DOI] [PubMed] [Google Scholar]
  11. Hlavica P., Hülsmann S. Studies on the mechanism of hepatic microsomal N-oxide formation. N-oxidation of NN-dimethylaniline by a reconstituted rabbit liver microsomal cytochrome P-448 enzyme system. Biochem J. 1979 Jul 15;182(1):109–116. doi: 10.1042/bj1820109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ishimura Y., Ullrich V., Peterson J. A. Oxygenated cytochrome P-450 and its possible role in enzymic hydroxylation. Biochem Biophys Res Commun. 1971 Jan 8;42(1):140–146. doi: 10.1016/0006-291x(71)90373-1. [DOI] [PubMed] [Google Scholar]
  13. Josephy P. D., Eling T., Mason R. P. The horseradish peroxidase-catalyzed oxidation of 3,5,3',5'-tetramethylbenzidine. Free radical and charge-transfer complex intermediates. J Biol Chem. 1982 Apr 10;257(7):3669–3675. [PubMed] [Google Scholar]
  14. Lichtenberger F., Nastainczyk W., Ullrich V. Cytochrome P450 as an oxene transferase. Biochem Biophys Res Commun. 1976 Jun 7;70(3):939–946. doi: 10.1016/0006-291x(76)90682-3. [DOI] [PubMed] [Google Scholar]
  15. Mansuy D., Beaune P., Cresteil T., Bacot C., Chottard J. C., Gans P. Formation of complexes between microsomal cytochrome P-450-Fe(II) and nitrosoarenes obtained by oxidation of arylhydroxylamines or reduction of nitroarenes in situ. Eur J Biochem. 1978 May 16;86(2):573–579. doi: 10.1111/j.1432-1033.1978.tb12341.x. [DOI] [PubMed] [Google Scholar]
  16. Noshiro M., Ullrich V., Omura T. Cytochrome b5 as electron donor for oxy-cytochrome P-450. Eur J Biochem. 1981 Jun 1;116(3):521–526. doi: 10.1111/j.1432-1033.1981.tb05367.x. [DOI] [PubMed] [Google Scholar]
  17. OMURA T., SATO R. THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE. J Biol Chem. 1964 Jul;239:2370–2378. [PubMed] [Google Scholar]
  18. Peterson J. A., Ebel R. E., O'Keeffe D. H. Dual-wavelength stopped-flow spectrophotometric measurement of NADPH-cytochrome P-450 reductase. Methods Enzymol. 1978;52:221–226. doi: 10.1016/s0076-6879(78)52025-9. [DOI] [PubMed] [Google Scholar]
  19. Rösen P., Stier A. Kinetics of CO and O 2 complexes of rabbit liver microsomal cytochrome P 450 . Biochem Biophys Res Commun. 1973 Apr 2;51(3):603–611. doi: 10.1016/0006-291x(73)91357-0. [DOI] [PubMed] [Google Scholar]
  20. SZARKOWSKA L., KLINGENBERG M. ON THE ROLE OF UBIQUINONE IN MITOCHONDRIA. SPECTROPHOTOMETRIC AND CHEMICAL MEASUREMENTS OF ITS REDOX REACTIONS. Biochem Z. 1963;338:674–697. [PubMed] [Google Scholar]
  21. Schenkman J. B., Remmer H., Estabrook R. W. Spectral studies of drug interaction with hepatic microsomal cytochrome. Mol Pharmacol. 1967 Mar;3(2):113–123. [PubMed] [Google Scholar]
  22. Stier A., Beitz I., Sackmann E. Radical accumulation in liver microsomal membranes during biotransformation of aromatic amines and nitro compounds. Naunyn Schmiedebergs Arch Pharmacol. 1972;274(2):189–191. doi: 10.1007/BF00501853. [DOI] [PubMed] [Google Scholar]
  23. Sum C. Y., Cho A. K. The metabolism of N-hydroxyphentermine by rat liver microsomes. Drug Metab Dispos. 1979 Mar-Apr;7(2):65–69. [PubMed] [Google Scholar]
  24. White R. E., Coon M. J. Oxygen activation by cytochrome P-450. Annu Rev Biochem. 1980;49:315–356. doi: 10.1146/annurev.bi.49.070180.001531. [DOI] [PubMed] [Google Scholar]
  25. YAMAZAKI I., PIETTE L. H. THE MECHANISM OF AEROBIC OXIDASE REACTION CATALYZED BY PEROXIDASE. Biochim Biophys Acta. 1963 Sep 3;77:47–64. doi: 10.1016/0006-3002(63)90468-2. [DOI] [PubMed] [Google Scholar]
  26. von Jagow R., Kampffmeyer H., Kiese M. The preparation of microsomes. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol. 1965 Jun 1;251(1):73–87. doi: 10.1007/BF00245731. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES