Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jun 15;212(3):691–697. doi: 10.1042/bj2120691

The bivalent-cation dependence of phosphatidylinositol synthesis in a cell-free system from lymphocytes.

J P Moore, G A Smith, T R Hesketh, J C Metcalfe
PMCID: PMC1153145  PMID: 6309152

Abstract

The bivalent-cation requirements of two enzymes involved in phosphatidylinositol synthesis were defined for pig lymphocyte membranes using a citric acid buffer. CTP:phosphatidic acid cytidylyltransferase (EC 2.7.7.41) is activated by free Mn2+ concentrations above 20nM and by free Mg2+ concentrations above 10 microM. When activated by Mg2+, the enzyme is weakly inhibited by Ca2+ (Ki greater than 250 microM), but Ca2+ has no effect when Mn2+ is used to stimulate CDP-diacylglycerol synthesis. The synthesis of phosphatidylinositol from phosphatidic acid is also stimulated by Mn2+ and Mg2+ concentrations similar to those above and is inhibited by free Ca2+ concentrations above 500nM, probably by its action on CDP-diacylglycerol:inositol 3-phosphatidyltransferase (EC 2.7.8.11). Taken together, these studies suggest that under physiological conditions phosphatidylinositol synthesis is activated by Mg2+ and it is possible that it is further regulated by the free concentrations of Ca2+ and/or Mn2+.

Full text

PDF
695

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan D., Michell R. H. Phosphatidylinositol cleavage in lymphocytes. Requirement for calcium ions at a low concentration and effects of other cations. Biochem J. 1974 Sep;142(3):599–604. doi: 10.1042/bj1420599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ash D. E., Schramm V. L. Determination of free and bound manganese(II) in hepatocytes from fed and fasted rats. J Biol Chem. 1982 Aug 25;257(16):9261–9264. [PubMed] [Google Scholar]
  3. Benjamins J. A., Agranoff B. W. Distribution and properties of CDP-diglyceride:inositol transferase from brain. J Neurochem. 1969 Apr;16(4):513–527. doi: 10.1111/j.1471-4159.1969.tb06850.x. [DOI] [PubMed] [Google Scholar]
  4. Butler M., Morell P. Sidedness of phospholipid synthesis on brain membranes. J Neurochem. 1982 Jul;39(1):155–164. doi: 10.1111/j.1471-4159.1982.tb04714.x. [DOI] [PubMed] [Google Scholar]
  5. Carter J. R., Kennedy E. P. Enzymatic synthesis of cytidine diphosphate diglyceride. J Lipid Res. 1966 Sep;7(5):678–683. [PubMed] [Google Scholar]
  6. DAWSON R. M., FREINKEL N. The distribution of free mesoinositol in mammalian tissues, including some observations on the lactating rat. Biochem J. 1961 Mar;78:606–610. doi: 10.1042/bj0780606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Daniels C. J., Palmer F. B. Biosynthesis of phosphatidylinositol in Crithidia fasciculata. Biochim Biophys Acta. 1980 May 28;618(2):263–281. doi: 10.1016/0005-2760(80)90032-6. [DOI] [PubMed] [Google Scholar]
  8. Egawa K., Takenawa T., Sacktor B. Inhibition by Ca2+ of the incorporation of myo-inositol into phosphatidylinositol. Mol Cell Endocrinol. 1981 Jan;21(1):29–35. doi: 10.1016/0303-7207(81)90027-7. [DOI] [PubMed] [Google Scholar]
  9. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  10. Felber S. M., Brand M. D. Factors determining the plasma-membrane potential of lymphocytes. Biochem J. 1982 May 15;204(2):577–585. doi: 10.1042/bj2040577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  12. Gupta R. K., Yushok W. D. Noninvasive 31P NMR probes of free Mg2+, MgATP, and MgADP in intact Ehrlich ascites tumor cells. Proc Natl Acad Sci U S A. 1980 May;77(5):2487–2491. doi: 10.1073/pnas.77.5.2487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hirasawa K., Irvine R. F., Dawson R. M. Proteolytic activation can produce a phosphatidylinositol phosphodiesterase highly sensitive to Ca2+. Biochem J. 1982 Sep 15;206(3):675–678. doi: 10.1042/bj2060675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hostetler K. Y., Zenner B. D., Morris H. P. Increased mitochondrial CTP: phosphatidic acid cytidyltransferase in the 7777 hepatoma. Biochem Biophys Res Commun. 1976 Sep 20;72(2):418–425. doi: 10.1016/s0006-291x(76)80059-9. [DOI] [PubMed] [Google Scholar]
  15. Khym J. X., Bynum J. W., Volkin E. The co-use of retention time and bandwidth measurements in evaluations of nucleotide pools by ion-exchange chromatography. Anal Biochem. 1977 Feb;77(2):446–463. doi: 10.1016/0003-2697(77)90258-5. [DOI] [PubMed] [Google Scholar]
  16. Kimura N., Nakane K., Nagata N. Activation by GTP of liver adenylate cyclase in the presence of high concentrations of ATP. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1250–1256. doi: 10.1016/0006-291x(76)91036-6. [DOI] [PubMed] [Google Scholar]
  17. Lichtman M. A., Jackson A. H., Peck W. A. Lymphocyte monovalent cation metabolism: cell volume, cation content and cation transport. J Cell Physiol. 1972 Dec;80(3):383–396. doi: 10.1002/jcp.1040800309. [DOI] [PubMed] [Google Scholar]
  18. Liteplo R. G., Sribney M. The stimulation of rat liver microsomal CTP: phosphatidate cytidylyltransferase activity by guanosine triphosphate. Biochim Biophys Acta. 1980 Sep 8;619(3):660–668. doi: 10.1016/0005-2760(80)90115-0. [DOI] [PubMed] [Google Scholar]
  19. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  20. Michell R. H. Is phosphatidylinositol really out of the calcium gate? Nature. 1982 Apr 8;296(5857):492–493. doi: 10.1038/296492a0. [DOI] [PubMed] [Google Scholar]
  21. Moore J. P., Smith G. A., Hesketh T. R., Metcalfe J. C. Early increases in phospholipid methylation are not necessary for the mitogenic stimulation of lymphocytes. J Biol Chem. 1982 Jul 25;257(14):8183–8189. [PubMed] [Google Scholar]
  22. PAULUS H., KENNEDY E. P. The enzymatic synthesis of inositol monophosphatide. J Biol Chem. 1960 May;235:1303–1311. [PubMed] [Google Scholar]
  23. Palmano K. P., Whiting P. H., Hawthorne J. N. Free and lipid myo-inositol in tissues from rats with acute and less severe streptozotocin-induced diabetes. Biochem J. 1977 Oct 1;167(1):229–235. doi: 10.1042/bj1670229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Prottey C., Hawthorne J. N. The biosynthesis of phosphatidic acid and phosphatidylinositol in mammalian pancreas. Biochem J. 1967 Oct;105(1):379–392. doi: 10.1042/bj1050379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raetz C. R., Hirschberg C. B., Dowhan W., Wickner W. T., Kennedy E. P. A membrane-bound pyrophosphatase in Escherichia coli catalyzing the hydrolysis of cytidine diphosphate-diglyceride. J Biol Chem. 1972 Apr 10;247(7):2245–2247. [PubMed] [Google Scholar]
  26. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  28. Sribney M., Hegadorn C. A. Biosynthesis of CDP-diacylglycerol in hog mesenteric lymph node lymphocytes. Can J Biochem. 1982 Jun;60(6):668–674. doi: 10.1139/o82-082. [DOI] [PubMed] [Google Scholar]
  29. Takenawa T., Egawa K. CDP-diglyceride:inositol transferase from rat liver. Purification and properties. J Biol Chem. 1977 Aug 10;252(15):5419–5423. [PubMed] [Google Scholar]
  30. Takenawa T., Egawa K. Phosphatidyl inositol: myo-inositol exchange enzyme from rat liver: partial purification and characterization. Arch Biochem Biophys. 1980 Jul;202(2):601–607. doi: 10.1016/0003-9861(80)90467-1. [DOI] [PubMed] [Google Scholar]
  31. Takenawa T., Saito M., Nagai Y., Egawa K. Solubilization of the enzyme catalyzing CDP-diglyceride-independent incorporation of myo-inositol into phosphatidyl inositol and its comparison to CDP-diglyceride:inositol transferase. Arch Biochem Biophys. 1977 Jul;182(1):244–250. doi: 10.1016/0003-9861(77)90304-6. [DOI] [PubMed] [Google Scholar]
  32. Thompson W., MacDonald G. Cytidine diphosphate diglyceride of bovine brain. Positional distribution of fatty acids and analysis of major molecular species. Eur J Biochem. 1976 May 17;65(1):107–111. doi: 10.1111/j.1432-1033.1976.tb10394.x. [DOI] [PubMed] [Google Scholar]
  33. Thompson W., MacDonald G. Isolation and characterization of cytidine diphosphate diglyceride from beef liver. J Biol Chem. 1975 Sep 10;250(17):6779–6785. [PubMed] [Google Scholar]
  34. Van Kessel W. S., Hax W. M., Demel R. A., De Gier J. High performance liquid chromatographic separation and direct ultraviolet detection of phospholipids. Biochim Biophys Acta. 1977 Mar 25;486(3):524–530. doi: 10.1016/0005-2760(77)90102-3. [DOI] [PubMed] [Google Scholar]
  35. Williams R. J. Free manganese (II) and iron (II) cations can act as intracellular cell controls. FEBS Lett. 1982 Apr 5;140(1):3–10. doi: 10.1016/0014-5793(82)80508-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES