Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Jan 15;217(2):399–408. doi: 10.1042/bj2170399

Uptake and output of various forms of choline by organs of the conscious chronically catheterized sheep.

B S Robinson, A M Snoswell, W B Runciman, R N Upton
PMCID: PMC1153230  PMID: 6696739

Abstract

The net uptake and output of plasma unesterified choline, glycerophosphocholine, phosphocholine and lipid choline by organs of the conscious chronically catheterized sheep were measured. There was significant production of plasma unesterified choline by the upper- and lower-body regions and the alimentary tract and uptake by the liver, lungs and kidneys. The upper- and lower-body regions drained by the venae cavae provided the bulk (about 82%) of the total body venous return of plasma unesterified choline. Production of plasma unesterified choline by the alimentary tract was approximately balanced by the plasma unesterified choline taken up by the liver, and was almost equal to the amount of choline secreted in the bile. There was a considerable amount of glycerophosphocholine in the liver and there was production of plasma glycerophosphocholine by the liver and uptake by the lungs and kidneys. Glycerophosphocholine was higher in the plasma of sheep than in that of rats. Plasma phosphocholine was produced by the alimentary tract and kidneys. There was production of plasma lipid choline by the upper- and lower-body regions drained by the venae cavae. The results suggest that the sheep synthesizes substantial amounts of choline in ectrahepatic tissues and has the capacity for extensive retention and recycling of bile choline. These observations, coupled with a slow turnover of the endogenous choline body pool, explain the low requirement of sheep for dietary choline in contrast with non-ruminant species.

Full text

PDF
399

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADAMS E. P., HEATH T. J. THE PHOSPHOLIPIDS OF RUMINANT BILE. Biochim Biophys Acta. 1963 Dec 27;70:688–690. doi: 10.1016/0006-3002(63)90813-8. [DOI] [PubMed] [Google Scholar]
  2. Balint J. A., Beeler D. A., Treble D. H., Spitzer H. L. Studies in the biosynthesis of hepatic and biliary lecithins. J Lipid Res. 1967 Sep;8(5):486–493. [PubMed] [Google Scholar]
  3. Barclay L. L., Blass J. P., Kopp U., Hanin I. Red-cell/plasma choline ratio in dementia. N Engl J Med. 1982 Aug 19;307(8):501–501. doi: 10.1056/nejm198208193070817. [DOI] [PubMed] [Google Scholar]
  4. Bergman E. N., Wolff J. E. Metabolism of volatile fatty acids by liver and portal-drained viscera in sheep. Am J Physiol. 1971 Aug;221(2):586–592. doi: 10.1152/ajplegacy.1971.221.2.586. [DOI] [PubMed] [Google Scholar]
  5. Bjørnstad P., Bremer J. In vivo studies on pathways for the biosynthesis of lecithin in the rat. J Lipid Res. 1966 Jan;7(1):38–45. [PubMed] [Google Scholar]
  6. Christie W. W. The composition, structure and function of lipids in the tissues of ruminant animals. Prog Lipid Res. 1978;17(2):111–205. doi: 10.1016/0079-6832(78)90007-1. [DOI] [PubMed] [Google Scholar]
  7. DAWSON R. M. Liver glycerylphosphorylcholine diesterase. Biochem J. 1956 Apr;62(4):689–693. doi: 10.1042/bj0620689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DAWSON R. M. Phosphorylcholine in rat tissues. Biochem J. 1955 Jun;60(2):325–328. doi: 10.1042/bj0600325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAWSON R. M. The role of glycerylphosphorylcholine and glycerylphosphorylethanolamine in liver phospholipid metabolism. Biochem J. 1955 Jan;59(1):5–8. doi: 10.1042/bj0590005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dawson R. M., Grime D. W., Lindsay D. B. On the insensitivity of sheep to the almost complete microbial destruction of dietary choline before alimentary-tract absorption. Biochem J. 1981 May 15;196(2):499–504. doi: 10.1042/bj1960499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Eckernäs S. A., Aquilonius S. M. Free choline in human plasma analysed by simple radio-enzymatic procedure: age distribution and effect of a meal. Scand J Clin Lab Invest. 1977 Apr;37(2):183–187. doi: 10.1080/00365517709156075. [DOI] [PubMed] [Google Scholar]
  12. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  13. Hanin I., Merikangas J. R., Merikangas K. R., Kopp U. Red-cell choline and Gilles de la Tourette syndrome. N Engl J Med. 1979 Sep 20;301(12):661–662. doi: 10.1056/NEJM197909203011213. [DOI] [PubMed] [Google Scholar]
  14. Harrison F. A., Leat W. M. Adsorption of palmitic, stearic and oleic acids in the sheep in the presence or absence of bile and-or pancreatic juice. J Physiol. 1972 Sep;225(3):565–576. doi: 10.1113/jphysiol.1972.sp009956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Haubrich D. R., Wang P. F., Chippendale T., Proctor E. Choline and acetylcholine in rats: effect of dietary choline. J Neurochem. 1976 Dec;27(6):1305–1313. doi: 10.1111/j.1471-4159.1976.tb02608.x. [DOI] [PubMed] [Google Scholar]
  16. Haubrich D. R., Wang P. F., Wedeking P. W. Distribution and metabolism of intravenously administered choline[methyl- 3-H] and synthesis in vivo of acetylcholine in various tissues of guinea pigs. J Pharmacol Exp Ther. 1975 Apr;193(1):246–255. [PubMed] [Google Scholar]
  17. Hebb C., Mann S. P., Mead J. Measurement and activation of choline acetyltransferase. Biochem Pharmacol. 1975 May 1;24(9):1007–1011. doi: 10.1016/0006-2952(75)90437-2. [DOI] [PubMed] [Google Scholar]
  18. Hinton B. T., Setchell B. P. Concentrations of glycerophosphocholine, phosphocholine and free inorganic phosphate in the luminal fluid of the rat testis and epididymis. J Reprod Fertil. 1980 Mar;58(2):401–406. doi: 10.1530/jrf.0.0580401. [DOI] [PubMed] [Google Scholar]
  19. Illingworth D. R., Portman O. W. An improved method for separating the products of lecithin and lysolecithin catabolism. J Chromatogr. 1972 Nov 8;73(1):262–264. doi: 10.1016/s0021-9673(01)80226-0. [DOI] [PubMed] [Google Scholar]
  20. Katz M. L., Bergman E. N. Simultaneous measurements of hepatic and portal venous blood flow in the sheep and dog. Am J Physiol. 1969 Apr;216(4):946–952. doi: 10.1152/ajplegacy.1969.216.4.946. [DOI] [PubMed] [Google Scholar]
  21. Neill A. R., Grime D. W., Snoswell A. M., Northrop A. J., Lindsay D. B., Dawson R. M. The low availability of dietary choline for the nutrition of the sheep. Biochem J. 1979 Jun 15;180(3):559–565. doi: 10.1042/bj1800559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Noble R. C. Digestion, absorption and transport of lipids in ruminant animals. Prog Lipid Res. 1978;17(1):55–91. doi: 10.1016/0079-6832(78)90005-8. [DOI] [PubMed] [Google Scholar]
  23. Richardson P. D., Withrington P. G. Liver blood flow. I. Intrinsic and nervous control of liver blood flow. Gastroenterology. 1981 Jul;81(1):159–173. [PubMed] [Google Scholar]
  24. Robins S. J., Armstrong M. J. Billiary lecithin secretion. II. Effects of dietary choline and biliary lecithin synthesis. Gastroenterology. 1976 Mar;70(3):397–402. [PubMed] [Google Scholar]
  25. Robins S. J. Recirculation and reutilization of micellar bile lecithin. Am J Physiol. 1975 Sep;229(3):598–602. doi: 10.1152/ajplegacy.1975.229.3.598. [DOI] [PubMed] [Google Scholar]
  26. Ryan R. L., McClure W. O. Purification of choline acetyltransferase from rat and cow brain. Biochemistry. 1979 Nov 27;18(24):5357–5365. doi: 10.1021/bi00591a016. [DOI] [PubMed] [Google Scholar]
  27. SCHMIDT G., GREENBAUM L. M., FALLOT P., WALKER A. C., THANNHAUSER S. J. The amounts of glycerophosphoryl esters in some tissues. J Biol Chem. 1955 Feb;212(2):887–895. [PubMed] [Google Scholar]
  28. SCHMIDT G., HECHT L., FALLOT P., GREENBAUM L., THANNHAUSER S. J. The amounts of glycerylphosphorylcholine in some mammalian tissues. J Biol Chem. 1952 May;197(2):601–609. [PubMed] [Google Scholar]
  29. Saunders D. R. Insignificance of the enterobiliary circulation of lecithin in man. Gastroenterology. 1970 Dec;59(6):848–852. [PubMed] [Google Scholar]
  30. Shea P. A., Aprison M. H. An enzymatic method for measuring picomole quantities of acetylcholine and choline in CNS tissue. Anal Biochem. 1973 Nov;56(1):165–177. doi: 10.1016/0003-2697(73)90181-4. [DOI] [PubMed] [Google Scholar]
  31. Thompson G. E., Bassett J. M., Bell A. W. The effects of feeding and acute cold exposure on the visceral release of volatile fatty acids, estimated hepatic uptake of propionate and release of glucose, and plasma insulin concentration in sheep. Br J Nutr. 1978 Jan;39(1):219–226. doi: 10.1079/bjn19780028. [DOI] [PubMed] [Google Scholar]
  32. Treble D. H., Frumkin S., Balint J. A., Beeler D. A. The entry of choline into lecithin, in vivo, by base exchange. Biochim Biophys Acta. 1970 Feb 10;202(1):163–171. doi: 10.1016/0005-2760(70)90227-4. [DOI] [PubMed] [Google Scholar]
  33. WISE E. M., Jr, ELWYN D. RATES OF REACTIONS INVOLVED IN PHOSPHATIDE SYNTHESIS IN LIVER AND SMALL INTESTINE OF INTACT RATS. J Biol Chem. 1965 Apr;240:1537–1548. [PubMed] [Google Scholar]
  34. Wang F. L., Haubrich D. R. A simple, sensitive, and specific assay for free choline in plasma. Anal Biochem. 1975 Jan;63(1):195–201. doi: 10.1016/0003-2697(75)90204-3. [DOI] [PubMed] [Google Scholar]
  35. Zeisel S. H. Dietary choline: biochemistry, physiology, and pharmacology. Annu Rev Nutr. 1981;1:95–121. doi: 10.1146/annurev.nu.01.070181.000523. [DOI] [PubMed] [Google Scholar]
  36. Zeisel S. H., Wurtman R. J. Developmental changes in rat blood choline concentration. Biochem J. 1981 Sep 15;198(3):565–570. doi: 10.1042/bj1980565. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES