Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1984 Mar 1;218(2):459–464. doi: 10.1042/bj2180459

The effect of glucose on the activity of phosphofructokinase in the mucosa of rat small intestine.

A Jamal, G L Kellett, J P Robertson
PMCID: PMC1153360  PMID: 6231923

Abstract

In common with other phosphofructokinase isoenzymes, phosphofructokinase in the epithelial cells of rat small-intestinal mucosa is activated by fructose 2,6-bisphosphate. However, fructose 2,6-bisphosphate was found not to be present in mucosa as judged by three criteria: (1) chromatography on Sephadex G-25 of crude mucosal extracts from fed rats did not result in a decrease, or indeed any change, in the activity of phosphofructokinase under suboptimal conditions at pH7; (2) ultrafiltrates of mucosal extracts did not possess any acid-labile activating activity when tested against chromatographed liver phosphofructokinase; (3) phosphofructokinase-2 activity was not detectable in mucosal extracts. Furthermore, the perfusion in vitro of isolated loops of jejunum or the incubation of mucosal scrapings from either fed rats or rats starved for 48 h showed that the activity of mucosal phosphofructokinase is not subject to short-term regulation by glucose. These observations are consistent with the view that phosphofructokinase is the rate-limiting enzyme of glycolysis in intestinal mucosa and account for the fact that the rate of glucose utilization by rat small intestine is not very responsive to changes in the concentration of glucose in the lumen.

Full text

PDF
463

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bronk J. R., Ingham P. A. Sugar transfer from the lumen of the rat small intestine to the vascular bed. J Physiol. 1979 Apr;289:99–113. doi: 10.1113/jphysiol.1979.sp012727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Claus T. H., Schlumpf J. R., el-Maghrabi M. R., Pilkis J., Pilkis S. J. Mechanism of action of glucagon on hepatocyte phosphofructokinase activity. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6501–6505. doi: 10.1073/pnas.77.11.6501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Davidson R. E., Leese H. J. Sucrose absorption by the rat small intestine in vivo and in vitro. J Physiol. 1977 May;267(1):237–248. doi: 10.1113/jphysiol.1977.sp011810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FISHER R. B., PARSONS D. S. A preparation of surviving rat small intestine for the study of absorption. J Physiol. 1949 Dec 15;110(1-2):36-46, pl. doi: 10.1113/jphysiol.1949.sp004419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hanson P. J., Parsons D. S. Factors affecting the utilization of ketone bodies and other substrates by rat jejunum: effects of fasting and of diabetes. J Physiol. 1978 May;278:55–67. doi: 10.1113/jphysiol.1978.sp012292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hanson P. J., Parsons D. S. The utilization of glucose and production of lactate by in vitro preparations of rat small intestine: effects of vascular perfusion. J Physiol. 1976 Mar;255(3):775–795. doi: 10.1113/jphysiol.1976.sp011307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hers H. G., Van Schaftingen E. Fructose 2,6-bisphosphate 2 years after its discovery. Biochem J. 1982 Jul 15;206(1):1–12. doi: 10.1042/bj2060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Heylen A., Van Schaftingen E., Hers H. G. The stimulation of phosphofructokinase from human erythrocytes by fructose 2,6-bisphosphate. FEBS Lett. 1982 Jun 21;143(1):141–143. doi: 10.1016/0014-5793(82)80291-3. [DOI] [PubMed] [Google Scholar]
  9. Hue L., Blackmore P. F., Exton J. H. Fructose 2,6-bisphosphate. Hormonal regulation and mechanism of its formation in liver. J Biol Chem. 1981 Sep 10;256(17):8900–8903. [PubMed] [Google Scholar]
  10. Hue L., Blackmore P. F., Shikama H., Robinson-Steiner A., Exton J. H. Regulation of fructose-2,6-bisphosphate content in rat hepatocytes, perfused hearts, and perfused hindlimbs. J Biol Chem. 1982 Apr 25;257(8):4308–4313. [PubMed] [Google Scholar]
  11. Jamal A., Kellett G. L. Regulation of mucosal phosphofructokinase in the small intestine of the streptozotocin-diabetic rat. Diabetologia. 1983 Oct;25(4):355–359. doi: 10.1007/BF00253201. [DOI] [PubMed] [Google Scholar]
  12. Jamal A., Kellett G. L. The effect of starvation on the control of phosphofructokinase activity in the epithelial cells of the rat small intestine. Biochem J. 1983 Jan 15;210(1):129–135. doi: 10.1042/bj2100129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Khoja S. M., Kellett G. L. Phosphofructokinase D from the epithelial cells of rat small intestine. Biochem J. 1983 Nov 1;215(2):335–341. doi: 10.1042/bj2150335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kuwajima M., Uyeda K. The tissue distribution of fructose-2,6-p2 and fructose-6-P,2-kinase in rats and the effect of starvation diabetes and hypoglycemia on hepatic fructose-2,6-P2 and fructose-6-P,2-kinase. Biochem Biophys Res Commun. 1982 Jan 15;104(1):84–88. doi: 10.1016/0006-291x(82)91943-x. [DOI] [PubMed] [Google Scholar]
  15. Lamers J. M., Hülsmann W. C. The effect of fructose on the stores of energy-rich phosphate in rat jejunum in vivo. Biochim Biophys Acta. 1973 Jun 20;313(1):1–8. doi: 10.1016/0304-4165(73)90183-9. [DOI] [PubMed] [Google Scholar]
  16. Lesse H. Glucose accumulation by rat small intestine during absorption in vivo. Nature. 1974 Oct 11;251(5475):512–513. doi: 10.1038/251512a0. [DOI] [PubMed] [Google Scholar]
  17. Nicholls T. J., Leese H. J., Bronk J. R. Transport and metabolism of glucose by rat small intestine. Biochem J. 1983 Apr 15;212(1):183–187. doi: 10.1042/bj2120183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nieto A., Castaño J. G. Control in vivo of rat liver phosphofructokinase by glucagon and nutritional changes. Biochem J. 1980 Mar 15;186(3):953–957. doi: 10.1042/bj1860953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pilkis S. J., El-Maghrabi M. R., Pilkis J., Claus T. H., Cumming D. A. Fructose 2,6-bisphosphate. A new activator of phosphofructokinase. J Biol Chem. 1981 Apr 10;256(7):3171–3174. [PubMed] [Google Scholar]
  20. Richards C. S., Furuya E., Uyeda K. Regulation of fructose 2,6-P2 concentration in isolated hepatocytes. Biochem Biophys Res Commun. 1981 Jun;100(4):1673–1679. doi: 10.1016/0006-291x(81)90711-7. [DOI] [PubMed] [Google Scholar]
  21. Van Schaftingen E., Hers H. G. Phosphofructokinase 2: the enzyme that forms fructose 2,6-bisphosphate from fructose 6-phosphate and ATP. Biochem Biophys Res Commun. 1981 Aug 14;101(3):1078–1084. doi: 10.1016/0006-291x(81)91859-3. [DOI] [PubMed] [Google Scholar]
  22. Van Schaftingen E., Hue L., Hers H. G. Control of the fructose-6-phosphate/fructose 1,6-bisphosphate cycle in isolated hepatocytes by glucose and glucagon. Role of a low-molecular-weight stimulator of phosphofructokinase. Biochem J. 1980 Dec 15;192(3):887–895. doi: 10.1042/bj1920887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Schaftingen E., Hue L., Hers H. G. Fructose 2,6-bisphosphate, the probably structure of the glucose- and glucagon-sensitive stimulator of phosphofructokinase. Biochem J. 1980 Dec 15;192(3):897–901. doi: 10.1042/bj1920897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Windmueller H. G., Spaeth A. E. Identification of ketone bodies and glutamine as the major respiratory fuels in vivo for postabsorptive rat small intestine. J Biol Chem. 1978 Jan 10;253(1):69–76. [PubMed] [Google Scholar]
  25. Windmueller H. G., Spaeth A. E. Respiratory fuels and nitrogen metabolism in vivo in small intestine of fed rats. Quantitative importance of glutamine, glutamate, and aspartate. J Biol Chem. 1980 Jan 10;255(1):107–112. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES