Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 15;208(3):703–711. doi: 10.1042/bj2080703

Regulation of malate oxidation in plant mitochondria. Response to rotenone and exogenous NAD+.

J M Palmer, J P Schwitzguébel, I M Møller
PMCID: PMC1154021  PMID: 6819864

Abstract

Exogenous NAD+ stimulated the rotenone-resistant oxidation of all the NAD+-linked tricarboxylic acid-cycle substrates in mitochondria from Jerusalem artichoke (Helianthus tuberosus L.) tubers. The stimulation was not removed by the addition of EGTA, which is known to inhibit the oxidation of exogenous NADH. It is therefore concluded that added NAD+ gains access to the matrix space and stimulates oxidation by the rotenone-resistant NADH dehydrogenase located on the matrix surface of the inner membrane. Added NAD+ stimulated the activity of malic enzyme and displaced the equilibrium of malate dehydrogenase; both observations are consistent with entry of NAD+ into the matrix space. Analysis of products of malate oxidation showed that rotenone-resistant oxygen uptake only occurred when the concentration of oxaloacetate was low and that of NADH was high. Thus it is proposed that the concentration of NADH regulates the activity of the two internal NADH dehydrogenases. Evidence is presented to suggest that the rotenone-resistant NADH dehydrogenase is engaged under conditions of high phosphorylation potential, which restricts electron flux through the rotenone-sensitive dehydrogenase (coupled to ATP synthesis).

Full text

PDF
709

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bowman E. J., Ikuma H., Stein H. J. Citric Acid cycle activity in mitochondria isolated from mung bean hypocotyls. Plant Physiol. 1976 Sep;58(3):426–432. doi: 10.1104/pp.58.3.426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brunton C. J., Palmer J. M. Pathways for the oxidation of malate and reduced pyridine nucleotide by wheat mitochondria. Eur J Biochem. 1973 Nov 1;39(1):283–291. doi: 10.1111/j.1432-1033.1973.tb03125.x. [DOI] [PubMed] [Google Scholar]
  3. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem. 1955 Nov;217(1):409–427. [PubMed] [Google Scholar]
  4. Coleman J. O.D., Palmer J. M. Role of Ca(2+) in the oxidation of exogenous NADH by plant mitochondria. FEBS Lett. 1971 Oct 1;17(2):203–208. doi: 10.1016/0014-5793(71)80148-5. [DOI] [PubMed] [Google Scholar]
  5. Coleman J. O., Palmer J. M. The oxidation of malate by isolated plant mitochondria. Eur J Biochem. 1972 Apr 24;26(4):499–509. doi: 10.1111/j.1432-1033.1972.tb01792.x. [DOI] [PubMed] [Google Scholar]
  6. Day D. A., Wiskich J. T. The Effect of Exogenous Nicotinamide Adenine Dinucleotide on the Oxidation of Nicotinamide Adenine Dinucleotide-linked Substrates by Isolated Plant Mitochondria. Plant Physiol. 1974 Sep;54(3):360–363. doi: 10.1104/pp.54.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Day D. A., Wiskich J. T. The oxidation of malate and exogenous reduced nicotinamide adenine dinucleotide by isolated plant mitochondria. Plant Physiol. 1974 Jan;53(1):104–109. doi: 10.1104/pp.53.1.104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Douce R., Bonner W. D., Jr Oxalacetate control of Krebs cycle oxidations in purified plant mitochondria. Biochem Biophys Res Commun. 1972 May 12;47(3):619–624. doi: 10.1016/0006-291x(72)90923-0. [DOI] [PubMed] [Google Scholar]
  9. Earnshaw M. J. The mechanism of K+-stimulated exogenous NADH oxidation in plant mitochondria. FEBS Lett. 1975 Nov 1;59(1):109–112. doi: 10.1016/0014-5793(75)80352-8. [DOI] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lance C., Hobson G. E., Young R. E., Biale J. B. Metabolic processes in cytoplasmic particles of the avocado fruit. IX. The oxidation of pyruvate and malate during the climacteric cycle. Plant Physiol. 1967 Apr;42(4):471–478. doi: 10.1104/pp.42.4.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lance C., Hobson G. E., Young R. E., Biale J. B. Metabolic processes in cytoplasmic particles of the avocado fruit. VII. Oxidative and phosphorylative activities throughout the climacteric cycle. Plant Physiol. 1965 Nov;40(6):1116–1123. doi: 10.1104/pp.40.6.1116. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Macrae A. R. Isolation and properties of a 'malic' enzyme from cauliflower bud mitochondria. Biochem J. 1971 May;122(4):495–501. doi: 10.1042/bj1220495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Møller I. M., Johnston S. P., Palmer J. M. A specific role for Ca2+ in the oxidation of exogenous NADH by Jerusalem-artichoke (Helianthus tuberosus) mitochondria. Biochem J. 1981 Feb 15;194(2):487–495. doi: 10.1042/bj1940487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Møller I. M., Palmer J. M. Charge screening by cations affects the conformation of the mitochondrial inner membrane. A study of exogenous MAD(P)H oxidation in plant mitochondria. Biochem J. 1981 Jun 1;195(3):583–588. doi: 10.1042/bj1950583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Palmer J. M., Kirk B. I. The influence of osmolarity on the reduction of exogenous cytochrome c and permeability of the inner membrane of Jerusalem artichoke mitochondria. Biochem J. 1974 Apr;140(1):79–86. doi: 10.1042/bj1400079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rustin P., Moreau F., Lance C. Malate Oxidation in Plant Mitochondria via Malic Enzyme and the Cyanide-insensitive Electron Transport Pathway. Plant Physiol. 1980 Sep;66(3):457–462. doi: 10.1104/pp.66.3.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rustin P., Moreau F. Malic enzyme activity and cyanide-insensitive electron transport in plant mitochondria. Biochem Biophys Res Commun. 1979 Jun 13;88(3):1125–1131. doi: 10.1016/0006-291x(79)91525-0. [DOI] [PubMed] [Google Scholar]
  19. STERN J. R., OCHOA S., LYNEN F. Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J Biol Chem. 1952 Sep;198(1):313–321. [PubMed] [Google Scholar]
  20. Tobin A., Djerdjour B., Journet E., Neuburger M., Douce R. Effect of NAD on Malate Oxidation in Intact Plant Mitochondria. Plant Physiol. 1980 Aug;66(2):225–229. doi: 10.1104/pp.66.2.225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wedding R. T., Black M. K., Pap D. Malate Dehydrogenase and NAD Malic Enzyme in the Oxidation of Malate by Sweet Potato Mitochondria. Plant Physiol. 1976 Dec;58(6):740–743. doi: 10.1104/pp.58.6.740. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES