Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Dec 15;208(3):737–742. doi: 10.1042/bj2080737

Abundant amounts of diadenosine 5',5"'-P1,P4-tetraphosphate are present and releasable, but metabolically inactive, in human platelets.

H Flodgaard, H Klenow
PMCID: PMC1154025  PMID: 6299279

Abstract

Diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) may be formed in the back reaction of the amino acid-activation reaction [Zamecnik, Stephenson, Janeway & Randerath (1966) Biochem. Biophys. Res. Commun. 24, 91-98]. On the basis of a number of observations of the properties of Ap4A it has been suggested that it may have a signal function for the initiation of DNA replication in eukaryotic cells] Grummt (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 371-375]. In the present paper human platelets have been shown to contain relatively large amounts of Ap4A. The compound is apparently metabolic inactive in platelets, but it is almost quantitatively released when platelets are activated to aggregate by treatment with thrombin. The results are discussed in connection with the known growth-stimulating activity of platelets.

Full text

PDF
739

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chen S. C., Brown P. R., Rosie D. M. Extraction procedures for use prior to HPLC nucleotide analysis using microparticle chemically bonded packings. J Chromatogr Sci. 1977 Jun;15(6):218–221. doi: 10.1093/chromsci/15.6.218. [DOI] [PubMed] [Google Scholar]
  2. D'Souza L., Glueck H. I. Measurement of nucleotide pools in platelets using high pressure liquid chromatography. Thromb Haemost. 1977 Dec 15;38(4):990–1001. [PubMed] [Google Scholar]
  3. Flodgaard H., Fleron P. Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction. J Biol Chem. 1974 Jun 10;249(11):3465–3474. [PubMed] [Google Scholar]
  4. Grummt F. Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):371–375. doi: 10.1073/pnas.75.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Grummt F., Waltl G., Jantzen H. M., Hamprecht K., Huebscher U., Kuenzle C. C. Diadenosine 5',5'''-P1,P4-tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6081–6085. doi: 10.1073/pnas.76.12.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hartwick R. A., Brown P. R. The performance of microparticle chemically-bonded anion-exchange resins in the analysis of nucleotides. J Chromatogr. 1975 Oct 29;112:650–662. doi: 10.1016/s0021-9673(00)99994-1. [DOI] [PubMed] [Google Scholar]
  7. Holmsen H., Day H. J., Storm E. Adenine nucleotide metabolism of blood platelets. VI. Subcellular localization of nucleotide pools with different functions in the platelet release reaction. Biochim Biophys Acta. 1969 Aug 20;186(2):254–266. doi: 10.1016/0005-2787(69)90003-3. [DOI] [PubMed] [Google Scholar]
  8. Holmsen H., Robkin L. Effects of antimycin A and 2-deoxyglucose on energy metabolism in washed human platelets. Thromb Haemost. 1980 Feb 29;42(5):1460–1472. [PubMed] [Google Scholar]
  9. Holmsen H., Storm E., Day H. J. Determination of ATP and ADP in blood platelets: a modification of the firefly luciferase assay for plasma. Anal Biochem. 1972 Apr;46(2):489–501. doi: 10.1016/0003-2697(72)90323-5. [DOI] [PubMed] [Google Scholar]
  10. Mills D. C., Thomas D. P. Blood platelet nucleotides in man and other species. Nature. 1969 Jun 7;222(5197):991–992. doi: 10.1038/222991a0. [DOI] [PubMed] [Google Scholar]
  11. Mustard J. F., Moore S., Packham M. A., Kinlough-Rathbone R. L. Platelets, thrombosis and atherosclerosis. Prog Biochem Pharmacol. 1977;13:312–325. [PubMed] [Google Scholar]
  12. Nachman R. L., Weksler B., Ferris B. Characterization of human platelet vascular permeability-enhancing activity. J Clin Invest. 1972 Mar;51(3):549–556. doi: 10.1172/JCI106843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Pross S. H., Klein T. W., Fishel C. W. Ribonucleoside and nucleotide components of normal human blood lymphocytes and platelets. Proc Soc Exp Biol Med. 1977 Apr;154(4):508–512. doi: 10.3181/00379727-154-39705. [DOI] [PubMed] [Google Scholar]
  14. Randerath K., Janeway C. M., Stephenson M. L., Zamecnik P. C. Isolation and characterization of dinucleoside tetra- and tri-phosphates formed in the presence of lysyl-sRNA synthetase. Biochem Biophys Res Commun. 1966 Jul 6;24(1):98–105. doi: 10.1016/0006-291x(66)90416-5. [DOI] [PubMed] [Google Scholar]
  15. Rapaport E., Zamecnik P. C., Baril E. F. HeLa cell DNA polymerase alpha is tightly associated with tryptophanyl-tRNA synthetase and diadenosine 5',5"'-P1,P4-tetraphosphate binding activities. Proc Natl Acad Sci U S A. 1981 Feb;78(2):838–842. doi: 10.1073/pnas.78.2.838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ross R., Vogel A. The platelet-derived growth factor. Cell. 1978 Jun;14(2):203–210. doi: 10.1016/0092-8674(78)90107-1. [DOI] [PubMed] [Google Scholar]
  18. Zamecnik P. C., Rapaport E., Baril E. F. Priming of DNA synthesis by diadenosine 5',5"'-P1,P4-tetraphosphate with a double-stranded octadecamer as a template and DNA polymerase alpha. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1791–1794. doi: 10.1073/pnas.79.6.1791. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES