Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Jan 15;210(1):73–77. doi: 10.1042/bj2100073

Evidence that glucagon acts on the liver to decrease mitochondrial calcium stores.

H M Baddams, L B Chang, G J Barritt
PMCID: PMC1154191  PMID: 6405743

Abstract

1. Mitochondria isolated from rats treated with glucagon for 60 min or lives perfused in the presence of glucagon for 10 min exhibited lower rates of 45Ca2+ exchange than did control mitochondria when this was measured under steady-state conditions in the presence of Mg2+, ATP, Pi and 0.13 microM- or 0.16 microM-free Ca2+ at pH 7.4 and at 25 degrees C or 37 degrees C. Under these conditions no significant difference in the rates of Ruthenium Red-induced 45Ca2+ efflux was observed. These results contrast with earlier work in which mitochondria isolated from glucagon-treated livers were shown to exhibit faster rates of Ca2+ uptake [Yamazaki (1975) J. Biol. Chem. 250, 7924-7930] and slower rates of spontaneous Ca2+ efflux [Hughes & Barritt (1978) Biochem. J. 176, 295-304] when these parameters were measured under different incubation conditions, including supra-physiological concentrations of free Ca2+ and the absence of added Mg2+ and ATP. 2. Perfusion of livers with glucagon before the addition of adrenaline or the Ca2+-selective ionophore A23187, to release Ca2+ from intracellular stores, decreased the amount of Ca2+ released by these agents. 3. Incubation of isolated hepatocytes in the presence of glucagon at 1.3 mM extracellular Ca2+ induced a small decrease in the plateau of the 45Ca2+-exchange curve obtained under steady-state conditions. 4. It is concluded that the actions of glucagon on liver mitochondrial Ca2+ transporters lead to a decrease, rather than an increase, in mitochondrial Ca2+ stores in the intact cell.

Full text

PDF
73

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Althaus-Salzmann M., Carafoli E., Jakob A. Ca2+, K+ redistributions and alpha-adrenergic activation of glycogenolysis in perfused rat livers. Eur J Biochem. 1980 May;106(1):241–248. doi: 10.1111/j.1432-1033.1980.tb06015.x. [DOI] [PubMed] [Google Scholar]
  2. Andia-Waltenbaugh A. M., Kimura S., Wood J., Divakaran P., Friedmann N. Effects of glucagon, insulin and cyclic-AMP on mitochondrial calcium uptake in the liver. Life Sci. 1978 Dec 11;23(24):2437–2443. doi: 10.1016/0024-3205(78)90303-x. [DOI] [PubMed] [Google Scholar]
  3. Andia-Waltenbaugh A. M., Lam A., Hummel L., Friedmann N. Characterization of the hormone-sensitive Ca2+ uptake activity of the hepatic endoplasmic reticulum. Biochim Biophys Acta. 1980 Jun 19;630(2):165–175. doi: 10.1016/0304-4165(80)90418-3. [DOI] [PubMed] [Google Scholar]
  4. Andia-Waltenbaugh A. M., Tate C. A., Friedmann N. K. The effect of glucagon on the kinetics of hepatic mitochondrial calcium uptake. Mol Cell Biochem. 1981 May 26;36(3):177–184. doi: 10.1007/BF02357035. [DOI] [PubMed] [Google Scholar]
  5. Baker P. F. The regulation of intracellular calcium in giant axons of Loligo and Myxicola. Ann N Y Acad Sci. 1978 Apr 28;307:250–268. doi: 10.1111/j.1749-6632.1978.tb41956.x. [DOI] [PubMed] [Google Scholar]
  6. Barritt G. J. Analysis of the effects of adrenaline and glucagon on calcium ion movement in liver cells by using a simple compartmental model [proceedings]. Biochem Soc Trans. 1980 Feb;8(1):144–145. doi: 10.1042/bst0080144. [DOI] [PubMed] [Google Scholar]
  7. Barritt G. J., Parker J. C., Wadsworth J. C. A kinetic analysis of the effects of adrenaline on calcium distribution in isolated rat liver parenchymal cells. J Physiol. 1981 Mar;312:29–55. doi: 10.1113/jphysiol.1981.sp013614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Berry M. N., Friend D. S. High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol. 1969 Dec;43(3):506–520. doi: 10.1083/jcb.43.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Binet A., Volfin P. Regulation by Mg2+ and Ca2+ of mitochondrial membrane integrity: study of the effects of a cytosolic molecule and Ca2+ antagonists. Arch Biochem Biophys. 1975 Oct;170(2):576–586. doi: 10.1016/0003-9861(75)90153-8. [DOI] [PubMed] [Google Scholar]
  10. Blackmore P. F., Dehaye J. P., Exton J. H. Studies on alpha-adrenergic activation of hepatic glucose output. The role of mitochondrial calcium release in alpha-adrenergic activation of phosphorylase in perfused rat liver. J Biol Chem. 1979 Aug 10;254(15):6945–6950. [PubMed] [Google Scholar]
  11. Borle A. B., Studer R. Effects of calcium ionophores on the transport and distribution of calcium in isolated cells and in liver and kidney slices. J Membr Biol. 1978 Jan 12;38(1-2):51–72. doi: 10.1007/BF01875162. [DOI] [PubMed] [Google Scholar]
  12. Brand M. D., De Selincourt C. Effects of glucagon and Na+ on the control of extramitochondrial free Ca2+ concentration by mitochondrial from liver and heart. Biochem Biophys Res Commun. 1980 Feb 27;92(4):1377–1382. doi: 10.1016/0006-291x(80)90438-6. [DOI] [PubMed] [Google Scholar]
  13. Bygrave F. L., Tranter C. J. The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium-ion transport in rat liver. Biochem J. 1978 Sep 15;174(3):1021–1030. doi: 10.1042/bj1741021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. CHAPPELL J. B., CROFTS A. R. CALCIUM ION ACCUMULATION AND VOLUME CHANGES OF ISOLATED LIVER MITOCHONDRIA. CALCIUM ION-INDUCED SWELLING. Biochem J. 1965 May;95:378–386. doi: 10.1042/bj0950378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Chen J. L., Babcock D. F., Lardy H. A. Norepinephrine, vasopressin, glucagon, and A23187 induce efflux of calcium from an exchangeable pool in isolated rat hepatocytes. Proc Natl Acad Sci U S A. 1978 May;75(5):2234–2238. doi: 10.1073/pnas.75.5.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Claret-Berthon B., Claret M., Mazet J. L. Fluxes and distribution of calcium in rat liver cells: kinetic analysis and identification of pools. J Physiol. 1977 Nov;272(3):529–552. doi: 10.1113/jphysiol.1977.sp012058. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Friedmann N., Divakaran P., Kirkland J., Kimura S., Wood J. Effects of the calcium ionophore A23187 on liver metabolism. J Pharmacol Exp Ther. 1979 Oct;211(1):127–132. [PubMed] [Google Scholar]
  18. Friedmann N., Rasmussen H. Calcium, manganese and hepatic gluconeogenesis. Biochim Biophys Acta. 1970 Oct 27;222(1):41–52. doi: 10.1016/0304-4165(70)90349-1. [DOI] [PubMed] [Google Scholar]
  19. Harris E. J. Modulation of Ca2+ efflux from heart mitochondria. Biochem J. 1979 Mar 15;178(3):673–680. doi: 10.1042/bj1780673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hughes B. P., Barritt G. J. Effects of glucagon and N6O2'-dibutyryladenosine 3':5'-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J. 1978 Oct 15;176(1):295–304. doi: 10.1042/bj1760295. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hughes B. P., Barritt G. J. Interaction between glucocorticoids and glucagon in the hormonal modification of calcium retention by isolated rat liver mitochondria. Biochem J. 1979 May 15;180(2):291–295. doi: 10.1042/bj1800291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacobus W. E., Tiozzo R., Lugli G., Lehninger A. L., Carafoli E. Aspects of energy-linked calcium accumulation by rat heart mitochondria. J Biol Chem. 1975 Oct 10;250(19):7863–7870. [PubMed] [Google Scholar]
  23. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  24. Pilkis S. J., Claus T. H., Johnson R. A., Park C. R. Hormonal control of cyclic 3':5'-AMP levels and gluconeogenesis in isolated hepatocytes from fed rats. J Biol Chem. 1975 Aug 25;250(16):6328–6336. [PubMed] [Google Scholar]
  25. Prpić V., Bygrave F. L. On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria. J Biol Chem. 1980 Jul 10;255(13):6193–6199. [PubMed] [Google Scholar]
  26. Prpić V., Spencer T. L., Bygrave F. L. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J. 1978 Dec 15;176(3):705–714. doi: 10.1042/bj1760705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sordahl L. A. Effects of magnesium, Ruthenium red and the antibiotic ionophore A-23187 on initial rates of calcium uptake and release by heart mitochondria. Arch Biochem Biophys. 1975 Mar;167(1):104–115. doi: 10.1016/0003-9861(75)90446-4. [DOI] [PubMed] [Google Scholar]
  28. Taylor W. M., Bygrave F. L., Blackmore P. F., Exton J. H. Stable enhancement of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction following the exposure of isolated rat liver cells to glucagon. FEBS Lett. 1979 Aug 1;104(1):31–34. doi: 10.1016/0014-5793(79)81079-0. [DOI] [PubMed] [Google Scholar]
  29. Taylor W. M., Prpić V., Exton J. H., Bygrave F. L. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon. Biochem J. 1980 May 15;188(2):443–450. doi: 10.1042/bj1880443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Taylor W. M., Reinhart P., Hunt N. H., Bygrave F. L. Role of 3',5'-cyclic AMP in glucagon-induced stimulation of ruthenium red-insensitive calcium transport in an endoplasmic reticulum-rich fraction of rat liver. FEBS Lett. 1980 Mar 24;112(1):92–96. doi: 10.1016/0014-5793(80)80136-0. [DOI] [PubMed] [Google Scholar]
  31. Tsien R. Y., Pozzan T., Rink T. J. T-cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature. 1982 Jan 7;295(5844):68–71. doi: 10.1038/295068a0. [DOI] [PubMed] [Google Scholar]
  32. Waltenbaugh A. M., Friedmann N. Hormone sensitive calcium uptake by liver microsomes. Biochem Biophys Res Commun. 1978 May 30;82(2):603–608. doi: 10.1016/0006-291x(78)90917-8. [DOI] [PubMed] [Google Scholar]
  33. Whiting J. A., Barritt G. J. On the mechanism by which hormones induce the release of Ca2+ from mitochondria in the liver cell. Biochem J. 1982 Jul 15;206(1):121–129. doi: 10.1042/bj2060121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yamazaki R. K. Glucagon stimulation of mitochondrial respiration. J Biol Chem. 1975 Oct 10;250(19):7924–7930. [PubMed] [Google Scholar]
  35. Yamazaki R. K., Mickey D. L., Story M. Rapid action of glucagon on hepatic mitochondrial calcium metabolism and respiratory rates. Biochim Biophys Acta. 1980 Aug 5;592(1):1–12. doi: 10.1016/0005-2728(80)90109-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES