Abstract
Alterations in the synthesis and degradation of proteins were investigated in intact lungs exposed to the volatile anaesthetic halothane. In rat lungs perfused in situ with Krebs-Henseleit bicarbonate buffer containing 4.5% (w/v) bovine serum albumin, 5.6 mM-glucose, plasma concentrations of 19 amino acids and 690 microM-[U-14C]-phenylalanine and equilibrated with O2/N2/CO2 (4:15:1), protein synthesis, calculated based on the specific radioactivity of aminoacyl-tRNA, was inhibited by halothane. The anaesthetic did not affect degradation of lung proteins. The inhibition of protein synthesis was rapid in onset, dose-dependent, and quickly reversible. It did not appear to be associated with overall energy depletion, with non-specific changes in cellular permeability, or with decreased availability of amino acids as substrates for protein synthesis.
Full text
PDF![379](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/6ece0aab593f/biochemj00356-0103.png)
![380](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/20fcd0ef9fc0/biochemj00356-0104.png)
![381](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/b4797f55c4bc/biochemj00356-0105.png)
![382](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/5cc28812ab41/biochemj00356-0106.png)
![383](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/821984ac2682/biochemj00356-0107.png)
![384](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/260629b95987/biochemj00356-0108.png)
![385](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/91985b29cf55/biochemj00356-0109.png)
![386](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/759bf6fe0f9f/biochemj00356-0110.png)
![387](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d547/1154235/d82d9f3ddb48/biochemj00356-0111.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altura B. T., Turlapaty P. D., Altura B. M. Pentobarbital sodium inhibits calcium uptake in vascular smooth muscle. Biochim Biophys Acta. 1980 Jan 25;595(2):309–312. doi: 10.1016/0005-2736(80)90093-0. [DOI] [PubMed] [Google Scholar]
- Bakhle Y. S., Block A. J. Effects of halothane on pulmonary inactivation of noradrenaline and prostaglandin E2 in anaesthetized dogs. Clin Sci Mol Med. 1976 Jan;50(1):87–90. doi: 10.1042/cs0500087. [DOI] [PubMed] [Google Scholar]
- Biebuyck J. F., Lund P. Effects of halothane and other anesthetic agents on the concentrations of rat liver metabolites in vivo. Mol Pharmacol. 1974 May;10(3):474–483. [PubMed] [Google Scholar]
- Biebuyck J. F., Lund P., Krebs H. A. The effects of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on glycolysis and biosynthetic processes of the isolated perfused rat liver. Biochem J. 1972 Jul;128(3):711–720. doi: 10.1042/bj1280711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Biebuyck J. F., Lund P., Krebs H. A. The protective effect of oleate on metabolic changes produced by halothane in rat liver. Biochem J. 1972 Jul;128(3):721–723. doi: 10.1042/bj1280721. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruce D. L. Halothane inhibition of rna and protein synthesis of PHA-treated human lymphocytes. Anesthesiology. 1975 Jan;42(1):11–14. doi: 10.1097/00000542-197501000-00003. [DOI] [PubMed] [Google Scholar]
- Carpenter G., Cohen S. 125I-labeled human epidermal growth factor. Binding, internalization, and degradation in human fibroblasts. J Cell Biol. 1976 Oct;71(1):159–171. doi: 10.1083/jcb.71.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiang M. J., Kishi F., Whitney P., Massaro D. Proteolysis in the rat lung: hypoxia and evidence for an inhibitor of proteolysis. Am J Physiol. 1981 Aug;241(2):E101–E107. doi: 10.1152/ajpendo.1981.241.2.E101. [DOI] [PubMed] [Google Scholar]
- Chua B., Kao R. L., Rannels D. E., Morgan H. E. Inhibition of protein degradation by anoxia and ischemia in perfused rat hearts. J Biol Chem. 1979 Jul 25;254(14):6617–6623. [PubMed] [Google Scholar]
- Cohen P. J. Effect of anesthetics on mitochondrial function. Anesthesiology. 1973 Aug;39(2):153–164. doi: 10.1097/00000542-197308000-00007. [DOI] [PubMed] [Google Scholar]
- Dean R. T. Macrophage protein turnover. Evidence for lysosomal participation in basal proteolysis. Biochem J. 1979 May 15;180(2):339–345. doi: 10.1042/bj1800339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dietrich J. W., Duffield R. Effects of the calcium antagonist verapamil on in vitro synthesis of skeletal collagen and noncollagen protein. Endocrinology. 1979 Nov;105(5):1168–1172. doi: 10.1210/endo-105-5-1168. [DOI] [PubMed] [Google Scholar]
- Eichhorn J. H., Peterkofsky B. Local anesthetic-induced inhibition of collagen secretion in cultured cells under conditions where microtubules are not depolymerized by these agents. J Cell Biol. 1979 Apr;81(1):26–42. doi: 10.1083/jcb.81.1.26. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eyring H., Woodbury J. W., D'Arrigo J. S. A molecular mechanism of general anesthesia. Anesthesiology. 1973 May;38(5):415–424. doi: 10.1097/00000542-197305000-00001. [DOI] [PubMed] [Google Scholar]
- Gacad G., Dickie K., Massaro D. Protein synthesis in lung: influence of starvation on amino acid incorporation into protein. J Appl Physiol. 1972 Sep;33(3):381–384. doi: 10.1152/jappl.1972.33.3.381. [DOI] [PubMed] [Google Scholar]
- Goldberg A. L., Dice J. F. Intracellular protein degradation in mammalian and bacterial cells. Annu Rev Biochem. 1974;43(0):835–869. doi: 10.1146/annurev.bi.43.070174.004155. [DOI] [PubMed] [Google Scholar]
- Hallén B., Johansson G. Inhalation anesthetics and cytochrome P-450-dependent reactions in rat liver microsomes. Anesthesiology. 1975 Jul;43(1):34–40. doi: 10.1097/00000542-197507000-00005. [DOI] [PubMed] [Google Scholar]
- Jefferson L. S., Korner A. Influence of amino acid supply on ribosomes and protein synthesis of perfused rat liver. Biochem J. 1969 Mar;111(5):703–712. doi: 10.1042/bj1110703. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kameyama T., Etlinger J. D. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. doi: 10.1038/279344a0. [DOI] [PubMed] [Google Scholar]
- McKee E. E., Cheung J. Y., Rannels D. E., Morgan H. E. Measurement of the rate of protein synthesis and compartmentation of heart phenylalanine. J Biol Chem. 1978 Feb 25;253(4):1030–1040. [PubMed] [Google Scholar]
- McLain G. E., Sipes I. G., Brown B. R., Jr An animal model of halothane hepatotoxicity: roles of enzyme induction and hypoxia. Anesthesiology. 1979 Oct;51(4):321–326. doi: 10.1097/00000542-197910000-00008. [DOI] [PubMed] [Google Scholar]
- Nahrwold M. L., Cohen P. J. Additive effect of nitrous oxide and halothane on mitochondrial function. Anesthesiology. 1973 Nov;39(5):534–536. doi: 10.1097/00000542-197311000-00014. [DOI] [PubMed] [Google Scholar]
- Naito H., Gillis C. N. Effects of halothane and nitrous oxide on removal of norepinephrine from the pulmonary circulation. Anesthesiology. 1973 Dec;39(6):575–580. doi: 10.1097/00000542-197312000-00003. [DOI] [PubMed] [Google Scholar]
- Nayler W. G., Szeto J. Effect of sodium pentobarbital on calcium in mammalian heart muscle. Am J Physiol. 1972 Feb;222(2):339–344. doi: 10.1152/ajplegacy.1972.222.2.339. [DOI] [PubMed] [Google Scholar]
- Price H. L. Calcium reverses myocardial depression caused by halothane: site of action. Anesthesiology. 1974 Dec;41(6):576–579. doi: 10.1097/00000542-197412000-00008. [DOI] [PubMed] [Google Scholar]
- Rannels D. E., Kao R., Morgan H. E. Effect of insulin on protein turnover in heart muscle. J Biol Chem. 1975 Mar 10;250(5):1694–1701. [PubMed] [Google Scholar]
- Rannels D. E., Roake G. M., Watkins C. A. Additive effects of pentobarbital and halothane to inhibit synthesis of lung proteins. Anesthesiology. 1982 Aug;57(2):87–93. doi: 10.1097/00000542-198208000-00004. [DOI] [PubMed] [Google Scholar]
- Rannels D. E., Wartell S. A., Watkins C. A. The measurement of protein synthesis in biological systems. Life Sci. 1982 May 17;30(20):1679–1690. doi: 10.1016/0024-3205(82)90300-9. [DOI] [PubMed] [Google Scholar]
- Ross W. T., Jr, Daggy B. P., Cardell R. R., Jr Hepatic necrosis caused by halothane and hypoxia in phenobarbital-treated rats. Anesthesiology. 1979 Oct;51(4):327–333. doi: 10.1097/00000542-197910000-00009. [DOI] [PubMed] [Google Scholar]
- Roufa D., Wu F. S., Martonosi A. N. The effect of Ca2+ ionophores upon the synthesis of proteins in cultured skeletal muscle. Biochim Biophys Acta. 1981 May 5;674(2):225–237. doi: 10.1016/0304-4165(81)90380-9. [DOI] [PubMed] [Google Scholar]
- Schmidt R. M., Rosenkranz H. S. Antimicrobial activity of local anesthetics: lidocaine and procaine. J Infect Dis. 1970 Jun;121(6):597–607. doi: 10.1093/infdis/121.6.597. [DOI] [PubMed] [Google Scholar]
- Turlapaty P. D., Altura B. T., Altura B. M. Ethanol reduces Ca2+ concentrations in arterial and venous smooth muscle. Experientia. 1979 May 15;35(5):639–640. doi: 10.1007/BF01960370. [DOI] [PubMed] [Google Scholar]
- Wartell S. A., Christopherson R., Watkins C. A., Rannels D. E. Inhibition of synthesis of lung proteins by halothane. Mol Pharmacol. 1981 May;19(3):520–524. [PubMed] [Google Scholar]
- Watkins C. A., Rannels D. E. In situ perfusion of rat lungs: stability and effects of oxygen tension. J Appl Physiol Respir Environ Exerc Physiol. 1979 Aug;47(2):325–329. doi: 10.1152/jappl.1979.47.2.325. [DOI] [PubMed] [Google Scholar]
- Watkins C. A., Rannels D. E. Measurement of protein synthesis in rat lungs perfused in situ. Biochem J. 1980 Apr 15;188(1):269–278. doi: 10.1042/bj1880269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Watkins C. A., Wartell S. A., Rannels D. E. Effect of halothane on metabolism of 5-hydroxytryptamine by rat lungs perfused in situ. Biochem J. 1983 Jan 15;210(1):157–166. doi: 10.1042/bj2100157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woźniak M. The cumulative effect of halothane and steroids on mitochondrial respiration. Biochem Pharmacol. 1978;27(24):2959–2961. doi: 10.1016/0006-2952(78)90216-2. [DOI] [PubMed] [Google Scholar]
- Wunner W. H., Bell J., Munro H. N. The effect of feeding with a tryptophan-free amino acid mixture on rat-liver polysomes and ribosomal ribonucleic acid. Biochem J. 1966 Nov;101(2):417–428. doi: 10.1042/bj1010417. [DOI] [PMC free article] [PubMed] [Google Scholar]