Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Feb 15;210(2):405–410. doi: 10.1042/bj2100405

Some properties of the Ca2+-stimulated ATPase of a rat liver microsomal fraction.

A P Dawson, D V Fulton
PMCID: PMC1154238  PMID: 6222732

Abstract

1. The heavy microsomal fraction from rat liver apparently has very little Ca2+-stimulated ATPase activity, although it has an active, ATP-driven Ca2+ accumulation system. 2. The addition of ionophore A23187 to the ATPase assay, to allow continuous Ca2+ recycling during the assay time, reveals the presence of a substantial Ca2+-stimulated ATPase with Vmax. 160 nmol of Pi/10 min per mg of protein and Km for Ca2+ 0.19 microM. 3. The Ca2+-stimulated ATPase, but not the basal Mg2+-stimulated ATPase, is potently inhibited by orthovanadate. Both the Ca2+-stimulated ATPase and the vanadate inhibition are enhanced by the presence of Mg2+. 4. Ca2+-stimulated ATPase activity is not responsive to calmodulin or the calmodulin antagonist trifluoperazine.

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andia-Waltenbaugh A. M., Lam A., Hummel L., Friedmann N. Characterization of the hormone-sensitive Ca2+ uptake activity of the hepatic endoplasmic reticulum. Biochim Biophys Acta. 1980 Jun 19;630(2):165–175. doi: 10.1016/0304-4165(80)90418-3. [DOI] [PubMed] [Google Scholar]
  2. Berthon B., Poggioli J., Capiod T., Claret M. Effect of the alpha-agonist noradrenaline on total and 45Ca2+ movements in mitochondria of rat liver cells. Biochem J. 1981 Oct 15;200(1):177–180. doi: 10.1042/bj2000177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bond G. H., Hudgins P. M. Inhibition of red cell Ca2+-ATPase by vanadate. Biochim Biophys Acta. 1980 Aug 14;600(3):781–790. doi: 10.1016/0005-2736(80)90480-0. [DOI] [PubMed] [Google Scholar]
  4. Bygrave F. L. Properties of energy-dependent calcium transport by rat liver microsomal fraction as revealed by initial-rate measurements. Biochem J. 1978 Jan 15;170(1):87–91. doi: 10.1042/bj1700087. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carafoli E., Niggli V., Malmström K., Caroni P. Calmodulin in natural and reconstituted calcium transporting systems. Ann N Y Acad Sci. 1980;356:258–266. doi: 10.1111/j.1749-6632.1980.tb29616.x. [DOI] [PubMed] [Google Scholar]
  6. Caroni P., Carafoli E. The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem. 1981 Apr 10;256(7):3263–3270. [PubMed] [Google Scholar]
  7. Dawson A. P. Kinetic properties of the Ca2+-accumulation system of a rat liver microsomal fraction. Biochem J. 1982 Jul 15;206(1):73–79. doi: 10.1042/bj2060073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gopinath R. M., Vincenzi F. F. Phosphodiesterase protein activator mimics red blood cell cytoplasmic activator of (Ca2+-Mg2+)ATPase. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1203–1209. doi: 10.1016/s0006-291x(77)80107-1. [DOI] [PubMed] [Google Scholar]
  9. Iwasa Y., Iwasa Y., Higashi K., Matsui K., Miyamoto E. Demonstration of a high affinity Ca2+ ATPase in rat liver plasma membranes. Biochem Biophys Res Commun. 1982 Mar 30;105(2):488–494. doi: 10.1016/0006-291x(82)91461-9. [DOI] [PubMed] [Google Scholar]
  10. Jarrett H. W., Penniston J. T. Partial purification of the Ca2+-Mg2+ ATPase activator from human erythrocytes: its similarity to the activator of 3':5' - cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 1977 Aug 22;77(4):1210–1216. doi: 10.1016/s0006-291x(77)80108-3. [DOI] [PubMed] [Google Scholar]
  11. Josephson L., Cantley L. C., Jr Isolation of a potent (Na-K)ATPase inhibitor from striated muscle. Biochemistry. 1977 Oct 18;16(21):4572–4578. doi: 10.1021/bi00640a006. [DOI] [PubMed] [Google Scholar]
  12. Kanagasuntheram P., Teo T. S. Calmodulin-sensitive ATP-dependent calcium transport by the rat parotid endoplasmic reticulum. FEBS Lett. 1982 May 17;141(2):233–236. doi: 10.1016/0014-5793(82)80055-0. [DOI] [PubMed] [Google Scholar]
  13. Lotersztajn S., Hanoune J., Pecker F. A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes. Dependence of an endogenous protein activator distinct from calmodulin. J Biol Chem. 1981 Nov 10;256(21):11209–11215. [PubMed] [Google Scholar]
  14. Moore L., Chen T., Knapp H. R., Jr, Landon E. J. Energy-dependent calcium sequestration activity in rat liver microsomes. J Biol Chem. 1975 Jun 25;250(12):4562–4568. [PubMed] [Google Scholar]
  15. Pick U. The interaction of vanadate ions with the Ca-ATPase from sarcoplasmic reticulum. J Biol Chem. 1982 Jun 10;257(11):6111–6119. [PubMed] [Google Scholar]
  16. Reinhart P. H., Bygrave F. L. Glucagon stimulation of ruthenium red-insensitive calcium ion transport in developing rat liver. Biochem J. 1981 Feb 15;194(2):541–549. doi: 10.1042/bj1940541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Wang T., Tsai L. I., Solaro R. J., Grassi de Gende A. O., Schwartz A. Effects of potassium on vanadate inhibition of sarcoplasmic reticulum Ca2+-ATPase from dog cardiac and rabbit skeletal muscle. Biochem Biophys Res Commun. 1979 Nov 14;91(1):356–361. doi: 10.1016/0006-291x(79)90626-0. [DOI] [PubMed] [Google Scholar]
  18. Wibo M., Morel N., Godfraind T. Differentiation of Ca2+ pumps linked to plasma membrane and endoplasmic reticulum in the microsomal fraction from intestinal smooth muscle. Biochim Biophys Acta. 1981 Dec 21;649(3):651–660. doi: 10.1016/0005-2736(81)90170-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES