Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Mar 15;210(3):803–810. doi: 10.1042/bj2100803

5-Hydroxytryptamine transport in cells and secretory granules from a transplantable rat insulinoma.

J C Hutton, M Peshavaria, N E Tooke
PMCID: PMC1154293  PMID: 6307272

Abstract

Mechanisms of transport of 5-hydroxytryptamine in the pancreatic B-cell were investigated by using cell suspensions and secretory granules prepared from a transplantable rat insulinoma. (1) Cells incubated with 5-hydroxy[G-3H]tryptamine at concentrations ranging from 0.1 microM to 5 mM accumulated the radioisotope principally by a simple diffusion process. The incorporated radioactivity was recovered principally as the parent molecule and was recovered predominantly in soluble protein and secretory-granule fractions prepared from the tissue. (2) Isolated granules incubated in buffered iso-osmotic medium without ATP accumulated the amine to concentrations up to 38-fold that of the medium. This process was insensitive to reserpine and occurred over a wide range of 5-hydroxytryptamine concentrations (0.075 microM-25 mM). Above 5 mM, 5-hydroxytryptamine accumulation decreased in parallel with the breakdown of the delta pH across the granule membrane. Uptake was favoured by alkaline media and was reduced by the addition of (NH4)2SO4. In both cases a close correlation was observed between uptake and the transmembrane delta pH, a finding that suggested that 5-hydroxytryptamine permeated the membrane as the free base and equilibrated across the membrane with the delta pH. Binding of 5-hydroxytryptamine to granule constituents also played a part in this process. ATP caused a further doubling of granule 5-hydroxytryptamine uptake by a process that was sensitive to reserpine (0.5 microM). Inhibitor studies suggested that amine transport in this instance was linked to the activity of the granule membrane proton-translocating ATPase. (3) It was concluded that the uptake of amines driven by proton gradients across the insulin-granule membrane could account for the accumulation in vivo of amines in the B-cell.

Full text

PDF
803

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BOGDANSKI D. F., PLETSCHER A., BRODIE B. B., UNDENFRIEND S. Identification and assay of serotonin in brain. J Pharmacol Exp Ther. 1956 May;117(1):82–88. [PubMed] [Google Scholar]
  2. Bird J. L., Wright E. E., Feldman J. M. Pancreatic islets: a tissue rich in serotonin. Diabetes. 1980 Apr;29(4):304–308. doi: 10.2337/diab.29.4.304. [DOI] [PubMed] [Google Scholar]
  3. Carty S. E., Johnson R. G., Scarpa A. Serotonin transport in isolated platelet granules. Coupling to the electrochemical proton gradient. J Biol Chem. 1981 Nov 10;256(21):11244–11250. [PubMed] [Google Scholar]
  4. Chick W. L., Warren S., Chute R. N., Like A. A., Lauris V., Kitchen K. C. A transplantable insulinoma in the rat. Proc Natl Acad Sci U S A. 1977 Feb;74(2):628–632. doi: 10.1073/pnas.74.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Feldman J. M., Reintgen D. S., Seigler H. F. Monoamine oxidase and catechol-O-methyltransferase activity in hamster and rat insulinomas. Diabetologia. 1979 Oct;17(4):249–256. doi: 10.1007/BF01235862. [DOI] [PubMed] [Google Scholar]
  6. Gylfe E. Association between 5-hydroxytryptamine release and insulin secretion. J Endocrinol. 1978 Aug;78(2):239–248. doi: 10.1677/joe.0.0780239. [DOI] [PubMed] [Google Scholar]
  7. Hellman B., Lernmark A., Sehlin J., Täljedal I. B. Transport and storage of 5-hydroxytryptamine in pancreatic -cells. Biochem Pharmacol. 1972 Mar 1;21(5):695–706. doi: 10.1016/0006-2952(72)90062-7. [DOI] [PubMed] [Google Scholar]
  8. Hutton J. C., Penn E. J., Jackson P., Hales C. N. Isolation and characterization of calmodulin from an insulin-secreting tumour. Biochem J. 1981 Mar 1;193(3):875–885. doi: 10.1042/bj1930875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hutton J. C., Penn E. J., Peshavaria M. Isolation and characterisation of insulin secretory granules from a rat islet cell tumour. Diabetologia. 1982 Oct;23(4):365–373. doi: 10.1007/BF00253746. [DOI] [PubMed] [Google Scholar]
  10. Hutton J. C., Peshavaria M. Proton-translocating Mg2+-dependent ATPase activity in insulin-secretory granules. Biochem J. 1982 Apr 15;204(1):161–170. doi: 10.1042/bj2040161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hutton J. C. The internal pH and membrane potential of the insulin-secretory granule. Biochem J. 1982 Apr 15;204(1):171–178. doi: 10.1042/bj2040171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jaim-Etcheverry G., Zieher L. M. Electron microscopic cytochemistry of 5-hydroxytryptamine (5-HT) in the beta cells of guinea pig endocrine pancreas. Endocrinology. 1968 Nov;83(5):917–923. doi: 10.1210/endo-83-5-917. [DOI] [PubMed] [Google Scholar]
  13. Johnson R. G., Carty S. E., Scarpa A. Proton: substrate stoichiometries during active transport of biogenic amines in chromaffin ghosts. J Biol Chem. 1981 Jun 10;256(11):5773–5780. [PubMed] [Google Scholar]
  14. Lindström P. Further studies on 5-hydroxytryptamine transport in pancreatic islets and isolated beta-cells. Br J Pharmacol. 1981 Jun;73(2):385–391. doi: 10.1111/j.1476-5381.1981.tb10433.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lindström P., Sehlin J., Täljedal I. B. Characteristics of 5-hydroxytryptamine transport in pancreatic islets. Br J Pharmacol. 1980 Apr;68(4):773–778. doi: 10.1111/j.1476-5381.1980.tb10871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mahony C., Feldman J. M. Species variation in pancreatic islet monoamine uptake and action. Diabetes. 1977 Apr;26(4):257–261. doi: 10.2337/diab.26.4.257. [DOI] [PubMed] [Google Scholar]
  17. Owman C., Håkanson R., Sundler F. Occurrence and function of amines in endocrine cells producing polypeptide hormones. Fed Proc. 1973 Jul;32(7):1785–1791. [PubMed] [Google Scholar]
  18. Phillips J. H. Hydroxytryptamine transport by the bovine chromaffin-granule membrane. Biochem J. 1978 Mar 15;170(3):673–679. doi: 10.1042/bj1700673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Phillips J. H. Steady-state kinetics of catecholamine transport by chromaffin-granule "ghosts". Biochem J. 1974 Nov;144(2):319–325. doi: 10.1042/bj1440319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ross S. B., Renyl A. L. Accumulation of tritiated 5-hydroxytryptamine in brain slices. Life Sci. 1967 Jul 1;6(13):1407–1415. doi: 10.1016/0024-3205(67)90188-9. [DOI] [PubMed] [Google Scholar]
  21. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  22. Shaskan E. G., Snyder S. H. Kinetics of serotonin accumulation into slices from rat brain: relationship to catecholamine uptake. J Pharmacol Exp Ther. 1970 Nov;175(2):404–418. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES