Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1983 Apr 1;211(1):55–63. doi: 10.1042/bj2110055

Comparative study of the carbohydrate moieties of normal and pathological human immunoglobulins M.

A Cahour, P Debeire, L Hartmann, J Montreuil
PMCID: PMC1154328  PMID: 6870828

Abstract

The well-known heterogeneity of normal and pathological immunoglobulins M was investigated in a study involving the characterization of their carbohydrate moieties. Oligosaccharide units were released from the native molecule by hydrazinolysis, and they were fractionated by affinity chromatography on a concanavalin A-Sepharose column to yield separate N-acetyl-lactosaminic-type and oligomannosidic-type structures. Further identification of these oligosaccharides was attempted by t.l.c. on silica gel and by determination of their monosaccharide compositions. A comparative study of the oligosaccharide units belonging to each population of immunoglobulin M was possible. Similarities were found in the occurrence of both types of oligosaccharide structures, and, in addition, a common double heterogeneity could be demonstrated for N-acetyl-lactosaminic-type structures: they could be resolved by affinity chromatography into bi-, tri- and tetra-antennary structures, and they also showed differences in N-acetylneuraminic acid content. Though some variations were observed in the exact composition of the oligosaccharide units within each population, it was possible to consider a representative oligosaccharide-unit composition of normal immunoglobulin M as a standard for comparison. On this basis a predominance of multi-antennary structures was observed in the more glycosylated pathological immunoglobulins M (10% carbohydrate content), whereas oligomannosidic structures were increased in pathological immunoglobulins M with a lower content of carbohydrates (7%). These variations are thought to reflect differences in the biosynthetic processing pathway of the carbohydrate units of the pathological immunoglobulins M or the enhanced expression of a molecular clone.

Full text

PDF
56

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chapman A., Kornfeld R. Structure of the high mannose oligosaccharides of a human IgM myeloma protein. I. The major oligosaccharides of the two high mannose glycopeptides. J Biol Chem. 1979 Feb 10;254(3):816–823. [PubMed] [Google Scholar]
  2. Chapman A., Kornfeld R. Structure of the high mannose oligosaccharides of a human IgM myeloma protein. II. The minor oligosaccharides of high mannose glycopeptide. J Biol Chem. 1979 Feb 10;254(3):824–828. [PubMed] [Google Scholar]
  3. Debray H., Montreuil J. Isolation and characterization of surface glycopeptides from adult rat hepatocytes in an established line. Biochimie. 1978;60(8):697–702. doi: 10.1016/s0300-9084(78)80014-5. [DOI] [PubMed] [Google Scholar]
  4. Fournet B., Montreuil J., Strecker G., Dorland L., Haverkamp J., Vliegenthart F. G., Binette J. P., Schmid K. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma alpha 1-acid glycoprotein by 360-MHZ 1H NMR spectroscopy and permethylation analysis. Biochemistry. 1978 Nov 28;17(24):5206–5214. doi: 10.1021/bi00617a021. [DOI] [PubMed] [Google Scholar]
  5. Hickman S., Kornfeld R., Osterland C. K., Kornfeld S. The structure of the glycopeptides of a human M-immunoglobulin. J Biol Chem. 1972 Apr 10;247(7):2156–2163. [PubMed] [Google Scholar]
  6. Jouanneau J., Fournet B., Bourrillon R. Localization and overall structure of a mannose-rich glycopeptide from a pathologic immunoglobulin. Biochim Biophys Acta. 1981 Feb 27;667(2):277–284. doi: 10.1016/0005-2795(81)90193-8. [DOI] [PubMed] [Google Scholar]
  7. Jouanneau J., Razafimahaleo E., Bourrillon R. Glycopeptides des immunoglobulines. Microhétérgénéité des chaînes oligosaccharidiques d'une immunoglobuline M de Waldenström. Eur J Biochem. 1970 Nov;17(1):72–77. doi: 10.1111/j.1432-1033.1970.tb01136.x. [DOI] [PubMed] [Google Scholar]
  8. Kornfeld S., Li E., Tabas I. The synthesis of complex-type oligosaccharides. II. Characterization of the processing intermediates in the synthesis of the complex oligosaccharide units of the vesicular stomatitis virus G protein. J Biol Chem. 1978 Nov 10;253(21):7771–7778. [PubMed] [Google Scholar]
  9. Li E., Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein. J Biol Chem. 1978 Nov 10;253(21):7762–7770. [PubMed] [Google Scholar]
  10. Narasimhan S., Wilson J. R., Martin E., Schachter H. A structural basis for four distinct elution profiles on concanavalin A--Sepharose affinity chromatography of glycopeptides. Can J Biochem. 1979 Jan;57(1):83–96. doi: 10.1139/o79-011. [DOI] [PubMed] [Google Scholar]
  11. Palo J., Savolainen H. Thin-layer chromatographic demonstration of aspartylglycosylamine and a novel acidic carbohydrate in human tissues. J Chromatogr. 1972 Feb 23;65(2):447–450. doi: 10.1016/s0021-9673(00)92570-6. [DOI] [PubMed] [Google Scholar]
  12. Parodi A. J., Leloir L. F. The role of lipid intermediates in the glycosylation of proteins in the eucaryotic cell. Biochim Biophys Acta. 1979 Apr 23;559(1):1–37. doi: 10.1016/0304-4157(79)90006-6. [DOI] [PubMed] [Google Scholar]
  13. Reading C. L., Penhoet E. E., Ballou C. E. Carbohydrate structure of vesicular stomatitis virus glycoprotein. J Biol Chem. 1978 Aug 25;253(16):5600–5612. [PubMed] [Google Scholar]
  14. Shimizu A., Putnam F. W., Paul C., Clamp J. R., Johnson I. Structure and role of the five glycopeptides of human IgM immunoglobulins. Nat New Biol. 1971 May 19;231(20):73–76. doi: 10.1038/newbio231073a0. [DOI] [PubMed] [Google Scholar]
  15. Spik G., Bayard B., Fournet B., Strecker G., Bouquelet S., Montreuil J. Studies on glycoconjugates. LXIV. Complete structure of two carbohydrate units of human serotransferrin. FEBS Lett. 1975 Feb 15;50(3):296–299. doi: 10.1016/0014-5793(75)80513-8. [DOI] [PubMed] [Google Scholar]
  16. Strecker G., Fournet B., Bouquelet S., Montreuil J., Dhondt J. L., Farriaux J. P. Etude chimique des 'mannosides urinaires excrétés au cours de la mannosidose. Biochimie. 1976;58(5):579–586. doi: 10.1016/s0300-9084(76)80227-1. [DOI] [PubMed] [Google Scholar]
  17. Tabas I., Kornfeld S. The synthesis of complex-type oligosaccharides. III. Identification of an alpha-D-mannosidase activity involved in a late stage of processing of complex-type oligosaccharides. J Biol Chem. 1978 Nov 10;253(21):7779–7786. [PubMed] [Google Scholar]
  18. Tabas I., Schlesinger S., Kornfeld S. Processing of high mannose oligosaccharides to form complex type oligosaccharides on the newly synthesized polypeptides of the vesicular stomatitis virus G protein and the IgG heavy chain. J Biol Chem. 1978 Feb 10;253(3):716–722. [PubMed] [Google Scholar]
  19. Takasaki S., Kobata A. Microdetermination of sugar composition by radioisotope labeling. Methods Enzymol. 1978;50:50–54. doi: 10.1016/0076-6879(78)50006-2. [DOI] [PubMed] [Google Scholar]
  20. Zanetta J. P., Breckenridge W. C., Vincendon G. Analysis of monosaccharides by gas-liquid chromatography of the O-methyl glycosides as trifluoroacetate derivatives. Application to glycoproteins and glycolipids. J Chromatogr. 1972 Jul 5;69(2):291–304. doi: 10.1016/s0021-9673(00)92897-8. [DOI] [PubMed] [Google Scholar]
  21. van Halbeek H., Dorland L., Vliegenthart J. F., Spik G., Cheron A., Mohtreuil J. Structure determination of two oligomannoside-type glycopeptides obtained from bovine lactotransferrin, by 500 MHz 1H-NMR spectroscopy. Biochim Biophys Acta. 1981 Jul;675(2):293–296. doi: 10.1016/0304-4165(81)90240-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES