Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Jun 1;477(Pt 2):215–221. doi: 10.1113/jphysiol.1994.sp020185

Synergistic effect of adrenergic and muscarinic receptor activation on [Ca2+]i in rabbit ciliary body epithelium.

N A Farahbakhsh 1, M C Cilluffo 1
PMCID: PMC1155623  PMID: 7932214

Abstract

1. Changes in cytosolic free calcium concentration ([Ca2+]i) in response to cholinergic and adrenergic agents alone and in combination were investigated using fura-2 fluorescence imaging in intact non-pigmented epithelial cells of rabbit ciliary body. 2. Resting ('baseline') [Ca2+]i was 147 +/- 6 nM (mean +/- S.E.M.). Acetylcholine (ACh, 10 microM) doubled [Ca2+]i, and adrenaline (1 microM) increased it by about 36%. When ACh (10 microM) and adrenaline (1 microM) were applied together [Ca2+]i was transiently increased to 1160 +/- 160 nM, about 7 times the response induced by ACh alone. 3. Noradrenaline and 5-bromo-6-(2-imidazolin-2-yl-amino)-quinoxaline (UK 14304) had effects similar to adrenaline in enhancing the response to ACh. Phenylephrine (Phe) had a relatively smaller effect and none was observed for methoxamine and isoprenaline (Iso). 4. The response to ACh and adrenaline could be blocked by atropine (1 microM, 87 +/- 5%), yohimbine (1 microM, 73 +/- 8%), and to a lesser degree by prazosin (1 microM). Propranolol had no effect. 5. Lowering the extracellular calcium concentration to 3 nM dropped the baseline [Ca2+]i by half and reduced the response to ACh and adrenaline to a small and transient rise in [Ca2+]i. Addition of La3+ to Ca(2+)-containing solution also lowered [Ca2+]i and largely reduced the response. 6. We conclude that simultaneous activation of muscarinic and alpha 2-adrenergic receptors induces a large increase in [Ca2+]i, which is the result of both Ca2+ release and influx.

Full text

PDF
221

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brubaker R. F. Flow of aqueous humor in humans [The Friedenwald Lecture]. Invest Ophthalmol Vis Sci. 1991 Dec;32(13):3145–3166. [PubMed] [Google Scholar]
  2. Crook R. B., Polansky J. R. Neurotransmitters and neuropeptides stimulate inositol phosphates and intracellular calcium in cultured human nonpigmented ciliary epithelium. Invest Ophthalmol Vis Sci. 1992 Apr;33(5):1706–1716. [PubMed] [Google Scholar]
  3. Elayan H., Kennedy B., Ziegler M. G. Epinephrine synthesis in the rat iris. Invest Ophthalmol Vis Sci. 1990 Apr;31(4):677–680. [PubMed] [Google Scholar]
  4. Farahbakhsh N. A., Cilluffo M. C., Chronis C., Fain G. L. Dihydropyridine-sensitive Ca2+ spikes and Ca2+ currents in rabbit ciliary body epithelial cells. Exp Eye Res. 1994 Feb;58(2):197–205. doi: 10.1006/exer.1994.1008. [DOI] [PubMed] [Google Scholar]
  5. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  6. Illek B., Fischer H., Machen T. E. Intracellular Ca2+ signalling is modulated by K+ channel blockers in colonic epithelial cells (HT-29/B6). Pflugers Arch. 1992 Oct;422(1):48–54. doi: 10.1007/BF00381512. [DOI] [PubMed] [Google Scholar]
  7. Lee C. H., Reisine T. D., Wax M. B. Alterations of intracellular calcium in human non-pigmented ciliary epithelial cells of the eye. Exp Eye Res. 1989 Jun;48(6):733–743. doi: 10.1016/0014-4835(89)90060-2. [DOI] [PubMed] [Google Scholar]
  8. Minneman K. P. Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev. 1988 Jun;40(2):87–119. [PubMed] [Google Scholar]
  9. Mittag T. W., Tormay A. Adrenergic receptor subtypes in rabbit iris-ciliary body membranes: classification by radioligand studies. Exp Eye Res. 1985 Feb;40(2):239–249. doi: 10.1016/0014-4835(85)90009-0. [DOI] [PubMed] [Google Scholar]
  10. Negresku E. V., Baldenkov G. N., Grigorian G. Iu, Mazaev A. V., Tkachuk V. A. Biokhimicheskie osobennosti alpha2-adrenoretseptorov trombotsitov i ikh sviaz' s povysheniem kontsentratsii vnutrikletochnogo Ca2+. Biokhimiia. 1989 Jun;54(6):909–915. [PubMed] [Google Scholar]
  11. Ohuchi T., Yoshimura N., Tanihara H., Kuriyama S., Ito S., Honda Y. Ca2+ mobilization in nontransformed ciliary nonpigmented epithelial cells. Invest Ophthalmol Vis Sci. 1992 Apr;33(5):1696–1705. [PubMed] [Google Scholar]
  12. Owen C. S. Spectra of intracellular Fura-2. Cell Calcium. 1991 Jun;12(6):385–393. doi: 10.1016/0143-4160(91)90064-l. [DOI] [PubMed] [Google Scholar]
  13. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  14. Raviola G., Raviola E. Intercellular junctions in the ciliary epithelium. Invest Ophthalmol Vis Sci. 1978 Oct;17(10):958–981. [PubMed] [Google Scholar]
  15. Ruffolo R. R., Jr, Nichols A. J., Stadel J. M., Hieble J. P. Pharmacologic and therapeutic applications of alpha 2-adrenoceptor subtypes. Annu Rev Pharmacol Toxicol. 1993;33:243–279. doi: 10.1146/annurev.pa.33.040193.001331. [DOI] [PubMed] [Google Scholar]
  16. Stone R. A., Kuwayama Y., Laties A. M. Regulatory peptides in the eye. Experientia. 1987 Jul 15;43(7):791–800. doi: 10.1007/BF01945357. [DOI] [PubMed] [Google Scholar]
  17. Wallnöfer A., Cauvin C., Lategan T. W., Rüegg U. T. Differential blockade of agonist- and depolarization-induced 45Ca2+ influx in smooth muscle cells. Am J Physiol. 1989 Oct;257(4 Pt 1):C607–C611. doi: 10.1152/ajpcell.1989.257.4.C607. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES