Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Jun 1;477(Pt 2):365–371. doi: 10.1113/jphysiol.1994.sp020198

Functional role of bicarbonate in propionate transport across guinea-pig isolated caecum and proximal colon.

W von Engelhardt 1, G Gros 1, M Burmester 1, K Hansen 1, G Becker 1, G Rechkemmer 1
PMCID: PMC1155636  PMID: 7523661

Abstract

1. Unidirectional fluxes of propionate across isolated epithelia from the guinea-pig caecum and proximal colon were measured under short-circuit current conditions. In the caecum and proximal colon the serosal-to-mucosal propionate flux (JPrsm) was higher than mucosal-to-serosal flux (JPrms), resulting in a net secretory flux of propionate. 2. HCO3(-)-CO2-free solution reduced JPrms in the caecum and proximal colon markedly; JPrsm was not (caecum) or little (proximal colon) affected. The subsequent addition of acetazolamide caused a further decrease in JPrms in the proximal colon, but not in the caecum. 3. In HCO3(-)-containing solutions acetazolamide or ethoxzolamide inhibited JPrms; JPrsm was not affected. A macromolecular carbonic anhydrase inhibitor, prontosil-dextran, had no effect on propionate fluxes, indicating that the intracellular carbonic anhydrase is of importance for short-chain fatty acid transport. 4. Subsequent to carbonic anhydrase inhibition, mucosal addition of amiloride caused a slight further decrease of JPrms in the caecum and proximal colon; JPrsm was not affected. 5. Results support the view that a considerable proportion of short-chain fatty acids (SCFAs) is absorbed via a SCFA(-)-HCO3- exchange.

Full text

PDF
366

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carter M. J., Parsons D. S. The carbonic anhydrases of some guinea-pig tissues. Biochim Biophys Acta. 1970 Apr 22;206(1):190–192. doi: 10.1016/0005-2744(70)90099-9. [DOI] [PubMed] [Google Scholar]
  2. Charney A. N., Wagner J. D., Birnbaum G. J., Johnstone J. N. Functional role of carbonic anhydrase in intestinal electrolyte transport. Am J Physiol. 1986 Nov;251(5 Pt 1):G682–G687. doi: 10.1152/ajpgi.1986.251.5.G682. [DOI] [PubMed] [Google Scholar]
  3. Geers C., Gros G., Gärtner A. Extracellular carbonic anhydrase of skeletal muscle associated with the sarcolemma. J Appl Physiol (1985) 1985 Aug;59(2):548–558. doi: 10.1152/jappl.1985.59.2.548. [DOI] [PubMed] [Google Scholar]
  4. Halm D. R., Frizzell R. A. Active K transport across rabbit distal colon: relation to Na absorption and Cl secretion. Am J Physiol. 1986 Aug;251(2 Pt 1):C252–C267. doi: 10.1152/ajpcell.1986.251.2.C252. [DOI] [PubMed] [Google Scholar]
  5. Lacy E. R., Colony P. C. Localization of carbonic anhydrase activity in the developing rat colon. Gastroenterology. 1985 Jul;89(1):138–150. doi: 10.1016/0016-5085(85)90754-1. [DOI] [PubMed] [Google Scholar]
  6. Luciano L., Reale E., Rechkemmer G., von Engelhardt W. Structure of zonulae occludentes and the permeability of the epithelium to short-chain fatty acids in the proximal and the distal colon of guinea pig. J Membr Biol. 1984;82(2):145–156. doi: 10.1007/BF01868939. [DOI] [PubMed] [Google Scholar]
  7. Lönnerholm G. Carbonic anhydrase in the intestinal tract of the guinea-pig. Acta Physiol Scand. 1977 Jan;99(1):53–61. doi: 10.1111/j.1748-1716.1977.tb10352.x. [DOI] [PubMed] [Google Scholar]
  8. Mascolo N., Rajendran V. M., Binder H. J. Mechanism of short-chain fatty acid uptake by apical membrane vesicles of rat distal colon. Gastroenterology. 1991 Aug;101(2):331–338. doi: 10.1016/0016-5085(91)90008-9. [DOI] [PubMed] [Google Scholar]
  9. Rechkemmer G., Rönnau K., von Engelhardt W. Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comp Biochem Physiol A Comp Physiol. 1988;90(4):563–568. doi: 10.1016/0300-9629(88)90668-8. [DOI] [PubMed] [Google Scholar]
  10. Sellin J. H., DeSoignie R. Short-chain fatty acid absorption in rabbit colon in vitro. Gastroenterology. 1990 Sep;99(3):676–683. doi: 10.1016/0016-5085(90)90954-y. [DOI] [PubMed] [Google Scholar]
  11. Sellin J. H., Oyarzabal H., Cragoe E. J. Electrogenic sodium absorption in rabbit cecum in vitro. J Clin Invest. 1988 Apr;81(4):1275–1283. doi: 10.1172/JCI113445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Titus E., Ahearn G. A. Short-chain fatty acid transport in the intestine of a herbivorous teleost. J Exp Biol. 1988 Mar;135:77–94. doi: 10.1242/jeb.135.1.77. [DOI] [PubMed] [Google Scholar]
  13. von Engelhardt W., Burmester M., Hansen K., Becker G., Rechkemmer G. Effects of amiloride and ouabain on short-chain fatty acid transport in guinea-pig large intestine. J Physiol. 1993 Jan;460:455–466. doi: 10.1113/jphysiol.1993.sp019481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. von Engelhardt W., Rechkemmer G. Segmental differences of short-chain fatty acid transport across guinea-pig large intestine. Exp Physiol. 1992 May;77(3):491–499. doi: 10.1113/expphysiol.1992.sp003609. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES