Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Dec 1;481(Pt 2):371–383. doi: 10.1113/jphysiol.1994.sp020446

Voltage-clamp analysis of gap junctions between embryonic muscles in Drosophila.

M Gho 1
PMCID: PMC1155936  PMID: 7537815

Abstract

1. Intercellular communication between embryonic muscle fibres was examined in Drosophila melanogaster. 2. Injection of fluorescent dye revealed extensive coupling between muscle fibres which form a uniform communicating arrangement of cells without restriction at the segmental borders. 3. Dye transfer was blocked by octanol and membrane depolarization suggesting that it is mediated by gap junctions. 4. Double voltage-clamp experiments from cell pairs in situ showed that the ionic coupling is sensitive to the voltage difference between the cytoplasm and the extracellular space (transmembrane voltage, Vi-o) as well as between the cells (transjunctional voltage, Vj). 5. In steady-state conditions, the gap conductance (gj) was maximal for hyperpolarized Vi-o and decreased progressively to near zero as Vi-o became more positive than -50 mV. 6. Gap conductance decreased from a maximal value as Vj increased either in the positive or negative direction (by depolarizing or hyperpolarizing, respectively, one of the cells from a holding potential of -60 mV). In both cases, gj asymptotically approached a non-zero residual value which was different for negative and positive Vj (about 20% of the maximal conductance for negative transmembrane potentials and 10% for positive values). 7. Application of octanol (1 mM) resulted in an almost complete and reversible block of gj.

Full text

PDF
372

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrio L. C., Suchyna T., Bargiello T., Xu L. X., Roginski R. S., Bennett M. V., Nicholson B. J. Gap junctions formed by connexins 26 and 32 alone and in combination are differently affected by applied voltage. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8410–8414. doi: 10.1073/pnas.88.19.8410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bate M. The embryonic development of larval muscles in Drosophila. Development. 1990 Nov;110(3):791–804. doi: 10.1242/dev.110.3.791. [DOI] [PubMed] [Google Scholar]
  3. Bennett M. V., Barrio L. C., Bargiello T. A., Spray D. C., Hertzberg E., Sáez J. C. Gap junctions: new tools, new answers, new questions. Neuron. 1991 Mar;6(3):305–320. doi: 10.1016/0896-6273(91)90241-q. [DOI] [PubMed] [Google Scholar]
  4. Broadie K. S., Bate M. Development of larval muscle properties in the embryonic myotubes of Drosophila melanogaster. J Neurosci. 1993 Jan;13(1):167–180. doi: 10.1523/JNEUROSCI.13-01-00167.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broadie K. S., Bate M. Development of the embryonic neuromuscular synapse of Drosophila melanogaster. J Neurosci. 1993 Jan;13(1):144–166. doi: 10.1523/JNEUROSCI.13-01-00144.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bukauskas F. F., Kempf C., Weingart R. Cytoplasmic bridges and gap junctions in an insect cell line (Aedes albopictus). Exp Physiol. 1992 Nov;77(6):903–911. doi: 10.1113/expphysiol.1992.sp003657. [DOI] [PubMed] [Google Scholar]
  7. Burt J. M., Spray D. C. Volatile anesthetics block intercellular communication between neonatal rat myocardial cells. Circ Res. 1989 Sep;65(3):829–837. doi: 10.1161/01.res.65.3.829. [DOI] [PubMed] [Google Scholar]
  8. Churchill D., Caveney S. Double whole-cell patch-clamp characterization of gap junctional channels in isolated insect epidermal cell pairs. J Membr Biol. 1993 Aug;135(2):165–180. doi: 10.1007/BF00231442. [DOI] [PubMed] [Google Scholar]
  9. Dermietzel R., Spray D. C. Gap junctions in the brain: where, what type, how many and why? Trends Neurosci. 1993 May;16(5):186–192. doi: 10.1016/0166-2236(93)90151-b. [DOI] [PubMed] [Google Scholar]
  10. FURSHPAN E. J., POTTER D. D. Transmission at the giant motor synapses of the crayfish. J Physiol. 1959 Mar 3;145(2):289–325. doi: 10.1113/jphysiol.1959.sp006143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Finbow M. E., Pitts J. D. Is the gap junction channel--the connexon--made of connexin or ductin? J Cell Sci. 1993 Oct;106(Pt 2):463–471. doi: 10.1242/jcs.106.2.463. [DOI] [PubMed] [Google Scholar]
  12. Flagg-Newton J. L., Dahl G., Loewenstein W. R. Cell junction and cyclic AMP: 1. Upregulation of junctional membrane permeability and junctional membrane particles by administration of cyclic nucleotide or phosphodiesterase inhibitor. J Membr Biol. 1981;63(1-2):105–121. doi: 10.1007/BF01969452. [DOI] [PubMed] [Google Scholar]
  13. Giaume C., Kado R. T., Korn H. Voltage-clamp analysis of a crayfish rectifying synapse. J Physiol. 1987 May;386:91–112. doi: 10.1113/jphysiol.1987.sp016524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Guthrie S. C., Gilula N. B. Gap junctional communication and development. Trends Neurosci. 1989 Jan;12(1):12–16. doi: 10.1016/0166-2236(89)90150-1. [DOI] [PubMed] [Google Scholar]
  15. Harris A. L., Spray D. C., Bennett M. V. Control of intercellular communication by voltage dependence of gap junctional conductance. J Neurosci. 1983 Jan;3(1):79–100. doi: 10.1523/JNEUROSCI.03-01-00079.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johansen J., Halpern M. E., Keshishian H. Axonal guidance and the development of muscle fiber-specific innervation in Drosophila embryos. J Neurosci. 1989 Dec;9(12):4318–4332. doi: 10.1523/JNEUROSCI.09-12-04318.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnston M. F., Ramón F. Voltage independence of an electrotonic synapse. Biophys J. 1982 Jul;39(1):115–117. doi: 10.1016/S0006-3495(82)84497-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Johnston M. F., Simon S. A., Ramón F. Interaction of anaesthetics with electrical synapses. Nature. 1980 Jul 31;286(5772):498–500. doi: 10.1038/286498a0. [DOI] [PubMed] [Google Scholar]
  19. Lo C. W., Gilula N. B. Gap junctional communication in the post-implantation mouse embryo. Cell. 1979 Oct;18(2):411–422. doi: 10.1016/0092-8674(79)90060-6. [DOI] [PubMed] [Google Scholar]
  20. Mazet J. L., Jarry T., Gros D., Mazet F. Voltage dependence of liver gap-junction channels reconstituted into liposomes and incorporated into planar bilayers. Eur J Biochem. 1992 Nov 15;210(1):249–256. doi: 10.1111/j.1432-1033.1992.tb17415.x. [DOI] [PubMed] [Google Scholar]
  21. Merritt D. J., Hawken A., Whitington P. M. The role of the cut gene in the specification of central projections by sensory axons in Drosophila. Neuron. 1993 Apr;10(4):741–752. doi: 10.1016/0896-6273(93)90174-p. [DOI] [PubMed] [Google Scholar]
  22. Moreno A. P., de Carvalho A. C., Verselis V., Eghbali B., Spray D. C. Voltage-dependent gap junction channels are formed by connexin32, the major gap junction protein of rat liver. Biophys J. 1991 Apr;59(4):920–925. doi: 10.1016/S0006-3495(91)82305-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Neyton J., Trautmann A. Single-channel currents of an intercellular junction. 1985 Sep 26-Oct 2Nature. 317(6035):331–335. doi: 10.1038/317331a0. [DOI] [PubMed] [Google Scholar]
  24. Nicholls J. G., Purves D. Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J Physiol. 1970 Aug;209(3):647–667. doi: 10.1113/jphysiol.1970.sp009184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Obaid A. L., Socolar S. J., Rose B. Cell-to-cell channels with two independently regulated gates in series: analysis of junctional conductance modulation by membrane potential, calcium, and pH. J Membr Biol. 1983;73(1):69–89. doi: 10.1007/BF01870342. [DOI] [PubMed] [Google Scholar]
  26. Ringham G. L. Localization and electrical characteristics of a giant synapse in the spinal cord of the lamprey. J Physiol. 1975 Oct;251(2):395–407. doi: 10.1113/jphysiol.1975.sp011100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rook M. B., Jongsma H. J., van Ginneken A. C. Properties of single gap junctional channels between isolated neonatal rat heart cells. Am J Physiol. 1988 Oct;255(4 Pt 2):H770–H782. doi: 10.1152/ajpheart.1988.255.4.H770. [DOI] [PubMed] [Google Scholar]
  28. Ruangvoravat C. P., Lo C. W. Restrictions in gap junctional communication in the Drosophila larval epidermis. Dev Dyn. 1992 Jan;193(1):70–82. doi: 10.1002/aja.1001930110. [DOI] [PubMed] [Google Scholar]
  29. Rubin G. M. Drosophila melanogaster as an experimental organism. Science. 1988 Jun 10;240(4858):1453–1459. doi: 10.1126/science.3131880. [DOI] [PubMed] [Google Scholar]
  30. Smith T. G., Baumann F. The functional organization within the ommatidium of the lateral eye of limulus. Prog Brain Res. 1969;31:313–349. doi: 10.1016/S0079-6123(08)63248-3. [DOI] [PubMed] [Google Scholar]
  31. Spray D. C., Cherbas L., Cherbas P., Morales E. A., Carrow G. M. Ionic coupling and mitotic synchrony of siblings in a Drosophila cell line. Exp Cell Res. 1989 Oct;184(2):509–517. doi: 10.1016/0014-4827(89)90348-0. [DOI] [PubMed] [Google Scholar]
  32. Spray D. C., Harris A. L., Bennett M. V. Equilibrium properties of a voltage-dependent junctional conductance. J Gen Physiol. 1981 Jan;77(1):77–93. doi: 10.1085/jgp.77.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Veenstra R. D. Voltage-dependent gating of gap junction channels in embryonic chick ventricular cell pairs. Am J Physiol. 1990 Apr;258(4 Pt 1):C662–C672. doi: 10.1152/ajpcell.1990.258.4.C662. [DOI] [PubMed] [Google Scholar]
  34. Verselis V. K., Bennett M. V., Bargiello T. A. A voltage-dependent gap junction in Drosophila melanogaster. Biophys J. 1991 Jan;59(1):114–126. doi: 10.1016/S0006-3495(91)82204-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Verselis V., Brink P. R. Voltage clamp of the earthworm septum. Biophys J. 1984 Jan;45(1):147–150. doi: 10.1016/S0006-3495(84)84143-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Warner A. E., Lawrence P. A. Permeability of gap junctions at the segmental border in insect epidermis. Cell. 1982 Feb;28(2):243–252. doi: 10.1016/0092-8674(82)90342-7. [DOI] [PubMed] [Google Scholar]
  37. Warner A. Gap junctions in development--a perspective. Semin Cell Biol. 1992 Feb;3(1):81–91. doi: 10.1016/s1043-4682(10)80009-1. [DOI] [PubMed] [Google Scholar]
  38. Weingart R., Bukauskas F. F. Gap junction channels of insects exhibit a residual conductance. Pflugers Arch. 1993 Jul;424(2):192–194. doi: 10.1007/BF00374611. [DOI] [PubMed] [Google Scholar]
  39. White R. L., Spray D. C., Campos de Carvalho A. C., Wittenberg B. A., Bennett M. V. Some electrical and pharmacological properties of gap junctions between adult ventricular myocytes. Am J Physiol. 1985 Nov;249(5 Pt 1):C447–C455. doi: 10.1152/ajpcell.1985.249.5.C447. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES