Skip to main content
Cellular and Molecular Neurobiology logoLink to Cellular and Molecular Neurobiology
. 1995 Feb;15(1):43–78. doi: 10.1007/BF02069558

Immortalized hypothalamic luteinizing hormone-releasing hormone (LHRH) neurons: A new tool for dissecting the molecular and cellular basis of LHRH physiology

William C Wetsel 1
PMCID: PMC11563086  PMID: 7648609

Abstract

1. Two LHRH neuronal cell lines were developed by targeted tumorigenesis of LHRH neuronsin vivo. These cell lines (GN and GT-1 cells) represent a homogeneous population of neurons. GT-1 cells have been further subcloned to produce the GT1-1, GT1-3, and GT1-7 cell lines. While considerable information is accumulating about GT-1 cells, very little is currently known about the characteristics and responses of GN cells.

2. By both morphological and biochemical criteria, GT-1 cells are clearly neurons. All GT-1 cells immunostain for LHRH and the levels of prohormone, peptide intermediates, and LHRH in the cells and medium are relatively high.

3. GT-1 cells biosynthesize, process, and secrete LHRH. Processing of pro-LHRH appears to be very similar to that reported for LHRH neuronsin vivo. At least four enzymes may be involved in processing the prohormone to LHRH.

4. LHRH neurons are unique among the neurons of the central nervous system because they arise from the olfactory placode and grow back into the preoptic-anterior hypothalamic region of the brain. Once these neurons reach this location, they send their axons to the median eminence. With respect to the immortalized neurons, GN cells were arrested during their transit to the brain. In contrast, GT-1 cells were able to migrate to the preoptic-anterior hypothalamic region but were unable correctly to target their axons to the median eminence. These problems in migration and targeting appear to be due to expression of the simian virus T-antigen.

5. While GT-1 cells are a homogeneous population of neurons, they are amenable to coculture with other types of cells. Coculture experiments currently under way should help not only to reveal some of the molecular and cellular cues that are important for neuronal migration and axonal targeting, but they should also highlight the nature of the cellular interactions which normally occurin situ.

6. GT-1 cells spontaneously secrete LHRH in a pusatile manner. The interpulse interval for LHRH from these cells is almost identical to that reported for release of LH and LHRHin vivo. GT-1 cells are interconnected by both gap junctions and synapses. The coordination and synchronization of secretion from these cells could occur through these interconnections, by feedback from LHRH itself, and/or by several different compounds that are secreted by these cells. One such compound is nitric oxide.

7. GT-1 cells have Na+, K+, Ca2+, and Cl channels. Polymerase chain reaction experiments coupled with Southern blotting and electrophysiological recordings reveal that GT-1 cells contain at least five types of Ca2+ channels. R-type Ca2+ channels appear to be the most common type of channel and this channel is activated by phorbol esters in the GT-1 cells.

8. LHRH is secreted from GT-1 cells in response to norepinephrine, dopamine, histamine, GABA (GABA-A agonists), glutamate, nitric oxide, neuropeptide Y, endothelin, prostaglandin E2, and activin A. Phorbol esters are very potent stimulators of LHRH secretion. Inhibition of LHRH release occurs in response to LHRH, GABA (GABA-B agonists), prolactin, and glucocorticoids.

9. Compared to secretion studies, far fewer agents have been tested for their effects on gene expression. All of the agents which have been tested so far have been found either to repress LHRH gene expression or to have no effect. The agents which have been reported to repress LHRH steady-state mRNA levels include LHRH, prolactin, glucocorticoids, nitric oxide, and phorbol esters. While forskolin stimulates LHRH secretion, it does not appear to have any effect on LHRH mRNA levels.

Key words: luteinizing hormone-releasing hormone, genetic targeting, neuronal cell lines, migration, morphology, implantation, prohormone processing, coculture, pulsatile release, secretion, gene expression

References

  1. Ackland, J. F., Nikolics, K., Seeburg, P. H., and Jackson, I. M. D. (1988). Molecular forms of gonadotropin-releasing hormone associated peptide (GAP): Changes within the rat hypothalamus and release from hypothalamic cellsin vitro.Neuroendocrinology48:376–386. [DOI] [PubMed] [Google Scholar]
  2. Aguila, M. C. (1994). Growth hromone-releasing factor increases somatostatin release and mRNA levels in the rat periventricular nucleus via nitric oxide by activation of guanylate cyclase.Proc. Natl. Acad. Sci. USA91:782–786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ahima, R. S., and Harlan, R. E. (1992). Glucocorticoid receptors in LHRH neurons.Neuroendocrinology56:845–850. [DOI] [PubMed] [Google Scholar]
  4. Al-Hamood, M. H., Gilmore, D. P., and Wilson, C. A. (1985). Evidence for stimulatoryβ-adrenergic component in the release of the ovulatory LH surge in pro-estrous rats.J. Endocrinol.106:143–151. [DOI] [PubMed] [Google Scholar]
  5. Arriza, J. L., Dawson, T. M., Simerly, R. B., Martin, L. J., Caron, M. G., Snyder, S. H., and Lefkowitz, R. J. (1992). The G-protein-coupled receptor kinases βARK1 and βARK2 are widely distributed at synapses in the rat brain.J. Neurosci.12:4045–4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Attardi, B. (1981). Facilitation and inhibition of the estrogen-induced luteinizing hormone surge in the rat by progesterone: Effects on cytoplasmic and nuclear estrogen receptors in the hypothalamus, preoptic, area, pituitary, and uterus.Endocrinology108:1487–1496. [DOI] [PubMed] [Google Scholar]
  7. Barraclough, C., and Wise, P. (1982). The role of catecholamines in the regulation of pituitary luteinizing hormone and follicle-stimulating hormone secretion.Endocr. Rev.3:91–119. [DOI] [PubMed] [Google Scholar]
  8. Benovic, J. L., Bouvier, M., Caron, M. G., and Lefkowitz, R. J. (1988). Regulation of adenylyl cyclase-coupledβ-adrenergic receptors.Annu. Rev. Cell. Biol.4:405–428. [DOI] [PubMed] [Google Scholar]
  9. Benovic, J. L., DeBlasi, A., Stone, W. C., Caron, M. G., and Lefkowitz, R. J. (1989).β-Adrenergic receptor kinase: Primary structure delineates a multi-gene family.Science246:235–240. [DOI] [PubMed] [Google Scholar]
  10. Benovic, J. L., Onorato, J. J., Arriza, J. L., Stone, W. C., Lohse, M., Jenkins, N. A., Gilbert, D. J., Copeland, N. G., Caron, M. G., and Lefkowitz, R. J. (1991). Cloning, expression, and chromosomal localization ofβ-adrenergic receptor kinase 2.J. Biol. Chem.266:14939–14946. [PubMed] [Google Scholar]
  11. Besecke, L. M., Wolfe, A. M., Pierce, M. E., Takahashi, J. S., and Levine, J. E. (1992). Neuropeptide Y stimulates LHRH release from superfused hypothalamic GT1–7 cells.Soc. Neurosci.22:192 (abstr.). [DOI] [PubMed] [Google Scholar]
  12. Besecke, L. M., Urban, J. H., and Levine, J. E. (1993). Neuropeptide Y1 receptors mediate NPY-stimulated LHRH release from superfused GT1-7 cells.Soc. Neurosci.23:618 (abstr.). [Google Scholar]
  13. Blake, C. A. (1976). Effect of intravenous infusion of catecholamines on rat plasma LH and prolactin concentration.Endocrinology98:99–104. [DOI] [PubMed] [Google Scholar]
  14. Blake, C. A., and Kelch, R. P. (1981). Administration of antiluteinizing hormone-releasing hormone serum to rats: Effects on periovulatory secretion of luteinizing hormone and follicle-stimulating hormone.Endocrinology109:2175–2179. [DOI] [PubMed] [Google Scholar]
  15. Bosma, M. M. (1993). Ion channel properties and episodic activity in isolated immortalized gonadotropin-releasing hormone (GnRH) neurons.J. Membr. Biol.136:85–96. [DOI] [PubMed] [Google Scholar]
  16. Bourguignon, J. P., Gerard, A., and Franchimon, P. (1989). Direct activation of gonadotropin-releasing hormone secretion through different receptors to neuroexcitatory amino acids.Neuroendocrinology49:402–408. [DOI] [PubMed] [Google Scholar]
  17. Brann, D. W., and Mahesh, V. B. (1991). Detailed examination of the mechanism and the site of action of progesterone and corticosteroids in the regulation of gonadotropin secretion: Hypothalamic gonadotropin-releasing hormone and catecholamine involvement.Biol. Reprod.44:1005–1015. [DOI] [PubMed] [Google Scholar]
  18. Bredt, D. S., and Snyder, S. H. (1992). Nitric oxide, a novel neuronal messenger.Neuron.8:3–11. [DOI] [PubMed] [Google Scholar]
  19. Bredt, D. S., Hwang, P. M., and Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide.Nature347:768–770. [DOI] [PubMed] [Google Scholar]
  20. Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M., and Snyder, S. H. (1991). Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase.Neuron7:615–624. [DOI] [PubMed] [Google Scholar]
  21. Bruder, J. M., and Wierman, M. E. (1993). Protein kinase C (PKC) inhibition of rat GnRH promoter activity is associated with an increase in c-fos and c-jun mRNA and mimicked by overexpression of c-fos and c-jun.Endocr. Soc.75:547 (abstr.). [Google Scholar]
  22. Bruder, J. M., Krebs, W. D., Nett, T. M., and Wierman, M. E. (1992). Phorbol ester activation of the protein kinase C pathways inhibits gonadotropin-releasing hormone gene expression.Endocrinology131:2552–2558. [DOI] [PubMed] [Google Scholar]
  23. Butler, W. R., Malven, P. V., Willett, L. B., and Bolt, D. J. (1972). Patterns of pituitary release and cranial output of LH and prolactin in ovariectomized ewes.Endocrinology91:793–801. [DOI] [PubMed] [Google Scholar]
  24. Calogero, A. E., Weber, R. F. A., and D'Agata, R. (1993). Effects of rat prolactin on gonadotropin-releasing hormone secretion by the explanted male rat hypothalamus.Neuroendocrinology57:152–157. [DOI] [PubMed] [Google Scholar]
  25. Cesnjaj, M., Krsmanovic, L. Z., Catt, K. J., and Stojilkovic, S. S. (1993). Autocrine induction of c-fos expression in GT1 neuronal cells by gonadotropin-releasing hormone.Endocrinology133:3042–3045. [DOI] [PubMed] [Google Scholar]
  26. Chandran, U. R., Attardi, B., Friedman, R., Dong, K. W., Roberts, J. L., and DeFranco, D. B. (1994). Glucorticoid receptor-mediated repression of gonadotropin-releasing hormone promoter activity in GT1 hypothalmic cell lines.Endocrinology134:1467–1474. [DOI] [PubMed] [Google Scholar]
  27. Charli, J. L., Rosztejn, W. H., Pattou, E., and Kordon, C. (1978). Effect of neurotransmitters on in vitro release of luteinizing hormone-releasing hormone from the medialbasal hypothalamus of male rats.Neurosci. Lett.10:159–163. [DOI] [PubMed] [Google Scholar]
  28. Clapp, D. H. C., and Martinez de la Escalera, G. (1994). Histamine stimulates inositiol phosphates production in and GnRH secretion from GT1 GnRH hypothalamic neuronal cell lines through H1 histamine receptor.Endocr. Soc.76:316 (abstr). [Google Scholar]
  29. Clarke, I. J., and Cummins, J. T. (1982). The temporal relationship between gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH) secretion in ovariectomized ewes.Endocrinology111:1737–1739. [DOI] [PubMed] [Google Scholar]
  30. Coquelin, A., and Desjardins, C. (1982). Luteinizing hormone and testosterone secretion in young and adult mice.Am. J. Physiol.243:E257-E263. [DOI] [PubMed] [Google Scholar]
  31. Crowley, W. R., and Kalra, S. P. (1987). Neuropeptide Y stimulates the release of luteinizing hormone-releasing hormone from medial basal hypothalamusin vitro: Modulation by ovarian hormones.Neuroendocrinology46:97–103. [DOI] [PubMed] [Google Scholar]
  32. Culler, M. D., and Negro-Vilar, A. (1987). Pulsatile follicle-stimulating hormone secretion is independent of luteinizing hormone-releasing hormone (LHRH): pulsatile replacement of LHRH bioactivity in LHRH-immunoneutralized rats.Endocrinology120:2011–2021. [DOI] [PubMed] [Google Scholar]
  33. Donoso, A. O., and Banzan, A. M. (1984). Effects of increase of brain GABA levels on the hypothalamic-pituitary-luteinizing hormone axis in rats.Acta Endocrinol. (Copenh.)106:298–304. [DOI] [PubMed] [Google Scholar]
  34. Drouva, S. V., and Gallo, R. V. (1977). Further evidence for inhibition of episodic LH release in ovariectomized rats by stimulation of dopamine receptors.Endocrinology100:792–798. [DOI] [PubMed] [Google Scholar]
  35. Dubey, A. K., and Plant, T. M. (1985). A suppression of gonadotropin secretion by cortisol in castrated male rhesus monkeys (Macaca mulatta) mediated by the interruption of hypothalamic gonadotropin-releasing hormone release.Biol. Reprod.33:423–431. [DOI] [PubMed] [Google Scholar]
  36. Estes, K., Simpkins, J., and Kalra, S. (1982). Resumption with clonidine of pulsatile LH release following acute norepinephrine depletion in ovariectomized rats.Neuroendocrinology35:56–62. [DOI] [PubMed] [Google Scholar]
  37. Evans, W. S., Cronin, M. J., and Thorner, M. O. (1982). Hypogonadism in hyperorolactinemia: Proposed mechanisms.Front. Neuroendocr.7:77–122. [Google Scholar]
  38. Favit, A., Wetsel, W. C., and Negro-Vilar, A. (1993). Differential expression of γ-aminobutryic acid receptors in immortalized luteinizing hormone-releasing hormone neurons.Endocrinology133:1983–1989. [DOI] [PubMed] [Google Scholar]
  39. Findell, P. R., Wong, K. H., Jackman, J. K., and Daniels, D. V. (1993). β1-Adrenergic and dopamine (D1)-receptors coupled to adenylyl cyclase activation in the GT1 gonadotropin-releasing hormone neurosecretory cells.Endocrinology132:628–688. [DOI] [PubMed] [Google Scholar]
  40. Fox, S. R., Harlan, R. E., Shivers, B. D., and Pfaff, D. W. (1990). Chemical characterization of neuroendocrine targets for progesterone in the female rat brain and pituitary.Neuroendocrinology51:276–283. [DOI] [PubMed] [Google Scholar]
  41. Gallo, F., Avola, R., Costa, A., and Marchetti, B. (1993). Astroglial cells in primary culture release factors that promote the growth of GT1–7 LHRH neuronal cells and stimulate leukocyte proliferation.Soc. Neurosci.23:1634 (abstr.). [Google Scholar]
  42. Garthwaite, J., Charles, S. L., and Chess-Williams, R. (1988). Endothelium-derived relaxing factor release on activation of NMDA receptors suggests a role as intracellular messenger in the brain.Nature336:385–388. [DOI] [PubMed] [Google Scholar]
  43. Gay, V. L., and Sheth, N. A. (1972). Evidence for a periodic release of LH in castrated male and female rats.Endocrinology90:158–162. [DOI] [PubMed] [Google Scholar]
  44. González-Machón. C., Bilezikjian, L. M., Corrigan, A. Z., Mellon, P. L., and Vale, W. (1991). Activin-A modulates gonadotropin-releasing hormone secretion from a gonadotropin-releasing hormone-secreting neuronal cell line.Neuroendocrinology54:373–377. [DOI] [PubMed] [Google Scholar]
  45. Gore, A. C., Ho, A., and Roberts, J. L. (1994). Regulation of gonadotropin-releasing hormone (GnRH) mRNA translational efficiency in the GT1–7 cell line.Endocr. Soc.76:311 (abstr.). [Google Scholar]
  46. Hakes, D. J., Birch, N. P., Mezey, A., and Dixon, J. E. (1991). Isolation of two complementary deoxyribonucleic acid clones from a rat insulinoma cell line based on similarities to Kex2 and furin sequences and the specific localization of each transcript to endocrine and neuroendocrine tissues in rats.Endocrinology129:3053–3063. [DOI] [PubMed] [Google Scholar]
  47. Hales, T. G., Kim, H., Longoni, B., Olsen, R. W., and Tobin, A. J. (1992). Immortalized hypothalamic GT1-7 neurons express functionalγ-aminobutyric acid type A receptors.Mol. Pharmacol.42:197–202. [PubMed] [Google Scholar]
  48. Hales, T. G., Sanderson, M. J., and Charles, A. C. (1994). GABA has excitatory actions on GnRH-secreting immortalized hypothalamic (GT1-7) neurons.Neuroendocrinology59:297–308. [DOI] [PubMed] [Google Scholar]
  49. Hanahan, D. (1985). Heritable formation of pancreaticβ-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes.Nature315:115–122. [DOI] [PubMed] [Google Scholar]
  50. Harms, P. G., Ojeda, S. R., and McCann, S. M. (1972). Prostaglandin involvement in hypothalamic control of gonadotropin and prolactin release.Science181:760–761. [DOI] [PubMed] [Google Scholar]
  51. Hatsuzawa, K., Hosaka, M., Nakagawa, T., Nagase, M., Shoda, A., Murakami, K., and Nakayama, K. (1990). Structure and expression of mouse furin, a yeast Kex2-related protease.J. Biol. Chem.265:22075–22078. [PubMed] [Google Scholar]
  52. Herbison, A. E., and Theodosis, D. T. (1992). Localization of oestrogen receptors in preoptic neurons containing neurotensin but not tyrosine hydroxylase, cholecystokinin or luteinizing hormone-releasing hormone in the male and female rat.Neuroscience50:283–298. [DOI] [PubMed] [Google Scholar]
  53. Hoffman, G. E., Lee, W.-S., Attardi, B., Yann, V., and Fitzsimmons, M. D. (1990). Luteinizing hormone-releasing hormone neurons express c-fos antigen after steroid activation.Endocrinology126:1736–1741. [DOI] [PubMed] [Google Scholar]
  54. Hoffman, N. W., MacPhee, A. E., and Gerall, A. A. (1991). Atrial natriuretic factor concentrations in discrete brain regions, pituitary, cardiac atria and plasma during the estrous cycle in rats.Neuroendocrinology53:177–184. [DOI] [PubMed] [Google Scholar]
  55. Huang, P. L., Dawson, T. M., Bredt, D. S., Snyder, S., and Fishman, M. C. (1993). Targeted disruption of the neuronal nitric oxide synthase gene.Cell75:1273–1286. [DOI] [PubMed] [Google Scholar]
  56. Huang, X., and Harlan, R. E. (1993). Absence of androgen receptors in LHRH immunoreactive neurons.Brain Res.624:309–311. [DOI] [PubMed] [Google Scholar]
  57. Jansson, L., and Sandler, S. (1991). The nitric oxide synthase II inhibitor NG-nitro-l-arginine stimulates pancreatic islet insulin releasein vitro, but not in the perifused pancreas.Endocrinology128:3081–3085. [DOI] [PubMed] [Google Scholar]
  58. Kalra, S. P. (1993). Mandatory neuropeptide-steroid signaling for the preovulatory luteinizing hormone-releasing hormone discharge.Endocr. Rev.14:507–538. [DOI] [PubMed] [Google Scholar]
  59. Kalra, S. P., and Kalra, P. S. (1983). Neural regulation of luteinizing hormone-releasing hormone secretion in the rat.Endocr. Rev.4:311–351. [DOI] [PubMed] [Google Scholar]
  60. Karanth, S., Lyson, K., and McCann, S. M. (1993). Role of nitric oxide in interleukin 2-induced corticotropin-releasing factor release from incubated hypothalami.Proc. Natl. Acad. Sci. USA90:3383–3387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Kato, M. (1992). Involvement of nitric oxide in growth hormone (GH)-releasing hormone-induced GH secretion in rat pituitary cells.Endocrinology131:2133–2138. [DOI] [PubMed] [Google Scholar]
  62. Katz, B. (1969).The Release of Neural Transmitter Substances, Charles C. Thomas, Springfield, IL, pp. 1–60. [Google Scholar]
  63. Kepka, J. K., Wang, C., Neely, C. I., Raynolds, M. V., Gordon, D. F., Wood, W. M., and Weirman, M. E. (1992). Structure of the rat gonadotropin releasing hormone (GnRH) gene promoter and functional analysis in hypothalamic cells.Nucleic Acids Res.20:1393–1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Khorram, O., Pau, K. Y. F., and Spies, H. G. (1987). Bimodal effects of neuropeptide Y on hypothalmic release of gonadotropin-releasing hormone in conscious rabbits.Neuroendocrinology45:290–297. [DOI] [PubMed] [Google Scholar]
  65. Kim, K., and Ramirez, V. D. (1985). Dibutyryl cyclic adenosine monophosphate stimulatesin vitro luteinizing hormone-releasing hormone release only from median eminence derived from ovariectomized, estradiol-primed rats.Brain Res.342:154–157. [DOI] [PubMed] [Google Scholar]
  66. Knobil, E. (1980). The neuroendocrine control of the menstrual cycle.Recent Progr. Horm. Res.36:52–88. [DOI] [PubMed] [Google Scholar]
  67. Knobil, E. (1987). The electrophysiology of the hypothalamic gonadotropic hormone releasing hormone (GnRH) pulse generator in the rhesus monkey. InEndocrinology and Physiology of Reproduction (P. C. K. Leung, D. T. Armstrong, K. B. Ruf, W. H. Moger, and H. G. Friesen, Eds), Plenum Press, New York, pp. 23–26. [Google Scholar]
  68. Kokoris, G. J., Lam, N. Y., Ferin, M., Silverman, A. J., and Gibson, M. J. (1988). Transplanted gonadotropin-releasing hormone neurons promote pulsatile luteinizing hormone secretion in congenitally hypogonadal (hpg) male mice.Neuroendocrinology48:45–52. [DOI] [PubMed] [Google Scholar]
  69. Kolbinger, W., Beyer, C., Fohr, K, Reisert, I., and Pilgrim, C. (1992). Diencephalic GABAergic neuronsin vitro respond to prolactin with a rapid increase in intracellular free calcium.Neuroendocrinology56:148–152. [DOI] [PubMed] [Google Scholar]
  70. Krsmanovic, L. Z., Stojilkovic, S. S., Balla, T., Al-Damluji, S., Weisner, R. I., and Catt, K. J. (1991). Receptors and neurosecretory actions of endothelin in hypothalamic neurons.Proc. Natl. Acad. Sci. USA88;11124–11128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Krsmanovic, L. Z., Stojilkovic, S. S., Merelli, F., Dufour, S. M., Virmani, M. A., and Catt, K. J. (1992). Calcium signaling and episodic secretion of gonadotropin-releasing hormone in hypothalamic neurons.Proc. Natl. Acad. Sci. USA89:8462–8466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Krsmanovic, L. Z., Stojilkovic, S. S., Mertz, L. M., Tomic, M., and Catt, K. J. (1993). Expression of gonadotropin-releasing hormone receptors and autocrine regulation of neuropeptide release in immortalized hypothalamic neurons.Proc. Nacl. Acad. Sci. USA90:3908–3912. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Laychock, S. G., Modica, M. E., and Cavanaugh, C. T. (1991).l-Arginine stimulates cyclic guanosine 3′,5′-monophosphate formation in rat islets of Langerhans and RINm5F insulinoma cells: Evidence forl-argine:nitric oxide synthase.Endocrinology129:3043–3052. [DOI] [PubMed] [Google Scholar]
  74. Lee, B. J., Kim, K., and Cho, W. K. (1990). Activation of intracellular pathways with forskolin and phorbol ester increases LHRH mRNA level in the rat hypothalamus superfusedin vitro.Mol. Brain Res.8:185–191. [DOI] [PubMed] [Google Scholar]
  75. Lee, W.-S., Smith, M. S., and Hoffman, G. E. (1990a). Luteinizing hormone-releasing hormone neurons express FOS protein during the proestrus surge of luteinizing hormone.Proc. Natl. Acad. Sci. USA87:5163–5167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Lee, W.-S., Smith, M. S., and Hoffman, G. E. (1990b). Progesterone enhances the surge of luteinizing hormone-releasing hormone by increasing the activation of luteinizing hormone-releasing hormone neurons.Endocrinology127:2604–2606. [DOI] [PubMed] [Google Scholar]
  77. Leung, P. C., Whitmoyer, D. I., Garland, K. E., and Sawyer, C. H. (1982). Adrenergic suppression of progesterone-induced LH surge in ovariectomized, estrogen-primed rats.Proc. Soc. Exp. Biol. Med.169:161–164. [DOI] [PubMed] [Google Scholar]
  78. Ling, N., Ying, S. Y., Ueno, N., Esch, F., Denoroy, L., and Guillemin, R. (1985). Isolation and partial characterization of a Mr 32,000 protein with inhibin activity from porcine follicular fluid.Proc. Natl. Acad. Sci. USA82:7217–7221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Liposits, Z., Setalo, G., and Flerko, B. (1984). Applications of the silver-gold intensified 3,3′-diaminobenzidine chromagen to the light and electron microscopic detection of the luteinizing hormone-releasing hormone system in the rat brain.Neuroscience13:513–525. [DOI] [PubMed] [Google Scholar]
  80. Liposits, Z., Merchenthaler, I., Wetsel, W. C., Reid, J. J., Mellon, P. L., Weiner, R. I., and Negro-Vilar, A. (1991). Morphological characterization of immortalized hypothalamic neurons synthesizing luteinizing hormone-releasing hormone.Endocrinology129:1575–1583. [DOI] [PubMed] [Google Scholar]
  81. Liposits, Z., Wetsel, W. C., Reid, J. J., Merchenthaler, I., Mellon, P. L., and Negro-Vilar, A. (1992). Electron microscopic studies on co-cultures of immortalized hypothalamic LHRH neurons and primary or immortalized anterior pituitary cells.Soc. Neurosci.22:17 (abstr.). [Google Scholar]
  82. López, F. J., Moretto, M., Merchenthaler, I., Petrusz, P., and Negro-Vilar, A. (1992a). Nitric oxide as a possible synchronizing neural messenger for the LHRH pulse generator. Symposium on Gonadotropins, GnRH, GnRH Analogs, and Gonadal Peptides, Paris, France, 1992, p. 50 (abstr.).
  83. López, F. J., Donoso, A. O., and Negro-Vilar, A. (1992b). Endogenous excitatory amino acids and glutamate receptor subtype involved in the control of hypothalamic luteinizing hormone-releasing hormone secretion.Endocrinology130:1986–1992. [DOI] [PubMed] [Google Scholar]
  84. Lumpkin, M., Negro-Vilar, A., Franchimont, P., and McCann, S. (1981). Evidence for a hypothalamic site of action of inhibin to suppress FSH release.Endocrinology108:1101–1104. [DOI] [PubMed] [Google Scholar]
  85. MacCumber, M. W., Ross, C. A., Glaser, B. M., and Snyder, S. H. (1989). Endothelin in brain: Receptors, mitogenesis, and biosynthesis in glial cells.Proc. Natl. Acad. Sci. USA87:2359–2363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Maggi, R., Celotti, F., Motta, M., and Martini, L. (1994). LHRH-secreting neurons (GT1-1 cells) contain high affinity binding sites for gonadal steroids.Endocr. Soc.76:311 (abstr.). [Google Scholar]
  87. Mahachoklertwattana, P., Black, S. M., Kaplan, S. L., Bristow, J. D., and Grumbach, M. M. (1994a). Nitric oxide synthesized by gonadotropin-releasing hormone neurons is a mediator of N-methyl-D-aspartate (NMDA)-induced GnRH secretion.Endocrinology135:1709–1712. [DOI] [PubMed] [Google Scholar]
  88. Mahachoklertwattana, P., Sanchez, J., Kaplan, S. L., and Grumbach, M. M. (1994b).N-Methyl-d-aspartate (NMDA) receptors mediate the release on gonadotropin-releasing hormone (GnRH) by NMDA in a hypothalamic GnRH neuronal cell line (GT1-1).Endocrinology134:1023–1030. [DOI] [PubMed] [Google Scholar]
  89. Marletta, M. A. (1989). Nitric oxide: Biosynthesis and biological significance.Trends Biol. Sci.14:488–492. [DOI] [PubMed] [Google Scholar]
  90. Martínez de la Escalaera, G., Choi, A. L. H., and Weiner, R. I. (1992a). Generation and synchronization of gonadotropin-releasing hormone (GnRH) pulses: Intrinsic properties of the GT1-1 GnRH neuronal cell line.Proc. Natl. Acad. Sci. USA89:1852–1855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. Martínez de la Escalera, G., Choi, A. L. H., and Weiner, R. I. (1992b).β1-Adrenergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: Stimulation of GnRH release via receptors positively coupled to adenylate cyclase.Endocrinology131:1397–1402. [DOI] [PubMed] [Google Scholar]
  92. Martínez de la Escalera, G., Gallo, F., Choi, A. L. H., and Weiner, R. I. (1992c). Dopaminergic regulation of the GT1 gonadotropin-releasing hormone (GnRH) neuronal cell lines: Stimulation of GnRH release via D1-receptors positively coupled to adenylate cyclase.Endocrinology131:2965–2971. [DOI] [PubMed] [Google Scholar]
  93. Martínez de la Escalera, G., Choi, A. L. H., and Weiner, R. I. (1994). Biphasic GABAergic regulation of GnRH secretion in GT1 cell lines.Neuroendocrinology59:420–425. [DOI] [PubMed] [Google Scholar]
  94. Mason, A. J., Pitts, S. L., Nikolics, K., Szonyi, E., Wilcox, J. N., Seeburg, P. H., and Stewart, T. A. (1986a). The hypogonadal mouse: Reproductive functions restored by gene therapy.Science234:1372–1378. [DOI] [PubMed] [Google Scholar]
  95. Mason, A. J., Hayflick, J. S., Zoeller, R. T., Young, W. S., III, Phillips, H. S., Nikolics, K., and Seeburg, P. H. (1986b). A deletion truncating the gonadotropin-releasing hormone gene is responsible for hypogonadism in thehpg mouse.Science234:1366–1371. [DOI] [PubMed] [Google Scholar]
  96. Masotto, C., Wisniewski, G., and Negro-Vilar, A. (1989). Differentγ-aminobutyric acid receptor subtypes are involved in the regulation of opiate-dependent and-independent luteinizing hormone-releasing hormone secretion.Endocrinology125:548–553. [DOI] [PubMed] [Google Scholar]
  97. Matesic, D. F., Germak, J. A., Dupont, E., and Madhukar, B. V. (1993). Immortalized hypothalamic luteinizing hormone-releasing hormone neurons express a connexin 26-like protein and display functional gap junction coupling assayed by fluorescence recovery after photobleaching.Neuroendocrinology58:485–492. [DOI] [PubMed] [Google Scholar]
  98. Matsuo, H., Baba, Y., Nair, R. M. G., Arimura, A., and Schally, A. V. (1971). Structure of the porcine LH- and FSH-releasing hormone I. The proposed amino acid sequence.Biochem. Biophys. Res. Commun.43:1334–1339. [DOI] [PubMed] [Google Scholar]
  99. McCann, S. M., Taleisnik, S., and Friedman, H. M. (1960). LH-releasing activity in hypothalamic extracts.Proc. Soc. Exp. Biol. Med.104:432–443. [Google Scholar]
  100. Medharmurthy, R., Gay, V. L., and Plant, T. M. (1992). Repetitive injections ofl-glutamic acid, in contrast to those ofN-methyl-d-aspartic acid, fail to elicit sustained hypothalamic GnRH release in the prepubertal rhesus monkey.Neuroendocrinology55;660–666. [DOI] [PubMed] [Google Scholar]
  101. Mellon, P. L., Windle, J. J., Goldsmith, P. C., Padula, C. A., Roberts, J. L., and Weiner, R. I. (1990). Immortalization of hypothalamic GnRH neurons by genetically targeted tumorigenesis.Neuron5:1–10. [DOI] [PubMed] [Google Scholar]
  102. Mellon, P. L., Wetsel, W. C., Windle, J. J., Valença, M. M., Goldsmith, P. C., Whyte, D. B., Eraly, S. A., Negro-Vilar, A., and Weinter, R. I. (1992). Immortalized hypothalamic gonadotropin-releasing hormone neurons.Ciba Found. Symp.168:104–126. [DOI] [PubMed] [Google Scholar]
  103. Melrose, P., Gross, L., Cruse, I., and Rush, M. (1987). Isolated gonadotropin-releasing hormone neurons harvested from adult male rats secrete biologically active neuropeptide in a regular repetitive manner.Endocrinology121:182–189. [DOI] [PubMed] [Google Scholar]
  104. Merchenthaler, I., Gorcs, T., Setalo, G., Petrusz, P., and Flerko, B. (1984). Gonadotropin-releasing hormone (GnRH) neurons and pathways in the rat brain.Cell Tissue Res.237:-15–29. [DOI] [PubMed] [Google Scholar]
  105. Merchanthaler, I., Setalo, G., Csontos, C., Petrusz, P., Flerko, B., and Negro-Vilar, A. (1989). Combined retrograde tracing and immunocytochemical identification of luteinizing hormone-releasing hormone- and somatostatin-containing neurons projecting to the median eminence of the rat.Endocrinology125:2812–2821. [DOI] [PubMed] [Google Scholar]
  106. Merlie, J. P., Fagan, D., Mudd, J., and Needleman, P. (1988). Isolation and characterization of the complementary DNA for sheep seminal vesicle prostaglandin endoperoxide synthase (cyclooxygenase).J. Biol. Chem.263:3550–3553. [PubMed] [Google Scholar]
  107. Milenkovic, L., D'Angelo, G., Kelly, P. A., and Weiner, R. I. (1994). Inhibition of gonadotropin hormone-releasing hormone release by prolactin from GT1 neuronal cell lines through prolactin receptors.Proc. Natl. Acad. Sci. USA91:1244–1247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Miller, G. M., Silverman, A. J., Roberts, J. L., Dong, K. W., and Gibson, M. J. (1993). Functional assessment of intrahypothalamic implants of immortalized gonadotropin-releasing hormone-secreting cells in female hypogonadal mice.Cell Transplant2:251–257. [DOI] [PubMed] [Google Scholar]
  109. Miyake, A., Ohtsuka, S., Nishizaki, J., Tasaka, K., Aono, T., Tanizawa, O., Yamatodani, A., Watanabe, T., and Wada, H. (1987). Involvement of H1 histamine receptor in basal and estrogen-stimulated luteinizing hormone-releasing hormone secretion in ratsin vitro.Neuroendocrinology45:191–196. [DOI] [PubMed] [Google Scholar]
  110. Morenter, S. M., Malcamp, C. A., Mason, A. J., Goldsmith, P. C., and Weiner, R. I. (1994). Temperature sensitive SV40 T antigen expression in GnRH neurons, unlike wild-type T antigen does not interfere with fertility in transgenic mice.Endocr. Soc.76:520 (abstr.). [Google Scholar]
  111. Moretto, M., Wetsel, W., and López, F. J. (1992). Endothelin stimulates LHRH secretion from both arcuate nucleus-median eminence fragments and immortalized LHRH neuronsin vitro.Endocr. Soc.74:98 (abstr.). [Google Scholar]
  112. Moretto, M., López, F. J., and Negro-Vilar, A. (1993). Nitric oxide regulates luteinizing hormone-releasing hormone secretion.Endocrinology133:2399–2402. [DOI] [PubMed] [Google Scholar]
  113. Nankin, H. R., and Troen, P. (1971). Repetitive luteinizing hormone elevations in serum of normal men.J. Clin. Endocrinol. Metab.33:558–560. [DOI] [PubMed] [Google Scholar]
  114. O'Dell, T. J., Huang, P. L., Dawson, T. M., Dinerman, J. L., Snyder, S. H., Kandel, E. R., and Fishman, M. C. (1994). Endothelial NOS and the blockade of LTP by NOS inhibitors in mice lacking neuronal NOS.Science265:542–546. [DOI] [PubMed] [Google Scholar]
  115. Oerter, K. E., Guardabasso, V., and Rodbard, D. (1986). Detection and characterization of peaks and estimation of instantaneous secretory rate for episodic pulsatile hormone secretion.Comp. Biomed. Res.19:170–191. [DOI] [PubMed] [Google Scholar]
  116. Ojeda, S. R., Negro-Vilar, A., and McCann, S. M. (1979). Release of prostaglandin Es by hypothalamic tissue: Evidence for their involvement in catecholamine-induced luteinizing hormone-releasing hormone release.Endocrinology104:617–624. [DOI] [PubMed] [Google Scholar]
  117. Ojeda, S. R., Negro-Vilar, A., and McCann, S. M. (1982). Evidence for involvement ofα-adrenergic receptors in norepinephrine-induced prostaglandin E2 and luteinizing hormone-releasing hormone from the median eminence.Endocrinology110:409–412. [DOI] [PubMed] [Google Scholar]
  118. Olcese, J., Middendorff, R., Munker, M., Schmidt, C., and McArdle, C. A. (1994). Natriuretic peptides stimulate cyclic GMP production in an immortalized LHRH neuronal cell line.J. Neuroendocr.6:127–130. [DOI] [PubMed] [Google Scholar]
  119. Ondo, J. G. (1974). Gamma-aminobutyric acid effects on pituitary gonadotropin secretion.Science186:738–739. [DOI] [PubMed] [Google Scholar]
  120. Ondo, J. G., Wheller, D. D., and Dom, R. M. (1988). Hypothalamic site of action forN-methyl-d-aspartate (NMDA) on LH secretion.Life Sci.43:2283–2286. [DOI] [PubMed] [Google Scholar]
  121. Pape, H. C., and Mager, R, (1992). Nitric oxide controls oscillatory activity in thalamocortical neurons.Neuron9:441–448. [DOI] [PubMed] [Google Scholar]
  122. Perez, J., Tranque, P. A., Naftolin, F., and Garcia-Segura, L. M. (1990). Gap junctions in the hypothalamic neurons of ovariectomized and estradiol-treated rats.Neurosci. Lett.108:17–21. [DOI] [PubMed] [Google Scholar]
  123. Peterson, S. L., McCrone, S., Keller, M., and Gardner, E. (1991). Rapid increase in LHRH mRNA levels following NMDA.Endocrinology129:1679–1681. [DOI] [PubMed] [Google Scholar]
  124. Radovick, S., Wray, S., Lee, E., Nicols, D. K., Nakayama, Y., Weintraub, B. D., Westphal, H., Cutler, G. B., Jr., and Wondisford, F. E. (1991). Migratory arrest of gonadotropin-releasing hormone neurons in transgenic mice.Proc. Natl. Acad. Sci. USA88:3402–3406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Radovick, S., Wondisford, F. E., Wray, S., Ticknor, C., Nakayama, Y., Cutler, G. B., Jr., Weintraub, B. D., Westphal, H., and Lee, E. (1992). Characterization, expression, and estradiol regulation of the human GnRH gene. InModes of Action of GnRH and GnRH Analogs (W. F. Crowley, Jr., and P. M. Conn, Eds.), Springer-Verlag, New York, pp. 85–104. [Google Scholar]
  126. Rahe, C. H., Owens, R. E., Fleeger, J. L., Newton, H. J., and Harms, P. G. (1980). Pattern of plasma luteinizing hormone in the cyclic cow: Dependence upon the period of the cycle.Endocrinology107:498–503. [DOI] [PubMed] [Google Scholar]
  127. Ramirez, V. D., Feder, H. H., and Sawyer, C. H. (1984). The role of brain catecholamines in the regulation of LH secretion: A critical inquiry.Front. Neuroendocrinol.8:27–84. [Google Scholar]
  128. Reid, J., Wetsel, W., and Merchenthaler, I. (1994). Implantation of immortalized hypothalamic LHRH-containing neurons into hypogonadal (hpg) mice: Innervation of the median eminence without restoration of gonadal functions.Endocrine Soc.76:311 (abstr.). [Google Scholar]
  129. Rettori, V., Belova, N., Dees, W. L., Nyberg, C. L., Gimeno, M., and McCann, S. M. (1993). Role of nitric oxide in the control of luteinizing hormone-releasing hormone releasein vivo andin vitro.Proc. Natl. Acad. Sci. USA90:10130–10134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. Samson, W. K., Aguila, M. C., and Bianchi, R. (1988). Atrial natriuretic factor inhibits luteinizing hormone secretion in the rat: Evidence for a hypothalamic site of action.Endocrinology122:1573–1582. [DOI] [PubMed] [Google Scholar]
  131. Samson, W. K., Skala, K. D., Alexander, B., and Huang, S. F. L. (1991). Possible neuroendocrine actions of endothelin-3.Endocrinology128:1465–1473. [DOI] [PubMed] [Google Scholar]
  132. Sarkar, D. K., and Fink, G. (1981). Gonadotropin-releasing hormone surge: Possible modulation through postsynapticα-adrenoreceptors and two pharmacologically distinct dopamine receptors.Endocrinology108:862–867. [DOI] [PubMed] [Google Scholar]
  133. Sawyer, C. H., Markee, J. E., and Everett, J. W. (1950). Further experiments on blocking pituitary activation in the rabbit and in the rat.J. Exp. Zool.113:659–666. [Google Scholar]
  134. Schmidt, H. H. H. W., Warner, T. D., Ishii, K., Sheng, H., and Murad, F. (1992). Insulin secretion from pancreatic B cells caused byl-arginine-derived nitrogen oxides.Science255:721–723. [DOI] [PubMed] [Google Scholar]
  135. Schuman, E. M., and Madison, D. V. (1994). Locally distributed synaptic potentiation in the hippocampus.Science263:532–536. [DOI] [PubMed] [Google Scholar]
  136. Schwanzel-Fukuda, M., and Pfaff, D. (1989). Origin of luteinizing hormone-releasing horhome neurons.Nature (Lond.)338:161–164. [DOI] [PubMed] [Google Scholar]
  137. Seidah, N. G., Gaspar, L., Mion, P., Marcinkiewicz, M., Mbikay, M., and Chrétien, M. (1990). cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: Tissue specific mRNAs encoding candidates for pro-hormone processing proteinases.DNA8:563–574. [Google Scholar]
  138. Shcherbatko, A. D., Wetsel, W. C., Negro-Vilar, A., and Armstrong, D. L. (1993). Immortal hypothalamic neurons express a novel voltage-gated calcium channel.Biophys. J.64:A381 (abstr.). [Google Scholar]
  139. Sheng, M., and Greenberg, M. E. (1990). The regulation and function of c-fos and other immediate early genes in the nervous system.Neuron4:477–485. [DOI] [PubMed] [Google Scholar]
  140. Shivers, B. D., Harlan, R. E., Morrell, J. I., and Pfaff, D. W. (1983). Absence of oestradiol concentration in cell nuclei of LHRH-immunoreactive neurons.Nature304:345–347. [DOI] [PubMed] [Google Scholar]
  141. Sibley, D. R., Strasser, R. H., Benovic, J. L., Daniel, K., and Lefkowitz, R. J. (1986). Phosphorylation/dephosphorylation of theβ-adrenergic receptor regulates its functional coupling to adenylate cyclase and subcellular distribution.Proc. Natl. Acad. Sci. USA83:9408–9412. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Silverman, A. J., and Krey, L. C (1978). The luteinizing hormone-releasing hormone (LHRH) neuronal network of the guinea pig brain. I. Intra- and extrahypothalamic projections.Brain Res.157:233–246. [DOI] [PubMed] [Google Scholar]
  143. Silverman, A. J., Zimmerman, E. A., Gibson, M. J., Perlow, M. J., Charlton, H. M., Kokoris, G. J., and Krieger, D. T. (1985). Implantation of normal fetal preoptic area in hypogonadal mutant mice: temporal relationships of the growth of gonadotropin-releasing hormone neurons and the development of the pituitary/testicular axis.Neuroscience16:69–84. [DOI] [PubMed] [Google Scholar]
  144. Silverman, A. J., Jhamandas, J., and Renaud, L. P. (1987). Localization of luteinizing hormone-releasing hormone (LHRH) neurons that project to the median eminence.J. Neurosci.7:2312–2319. [PMC free article] [PubMed] [Google Scholar]
  145. Silverman, A. J., Roberts, J. L., Dong, K. W., Miller, M., and Gibson, M. J. (1992). Intrahypothalamic injection of a cell line secreting gonadotropin-releasing hormone results in cellular differentiation and reversal of hypogonadism in mutant mice.Proc. Natl. Acad. Sci. USA89:10668–10672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Sortino, M. A., Aleppo, G., Scapagnini, U., and Canonico, P. L. (1994). Involvement of nitric oxide in the regulation of gonadotropin-releasing hormone release from the GT1-1 neuronal cell line.Endocrinology134:1782–1787. [DOI] [PubMed] [Google Scholar]
  147. Southern, C., Schulster, D., and Green, I. C. (1990). Inhibition of insulin secretion by interluekin-1β and tumor necrosis factor-α via anl-arginine-dependent nitric oxide generating mechanism.FEBS Lett.276:42–44. [DOI] [PubMed] [Google Scholar]
  148. Spergel, D. J., Krsmanovic, L. Z., Stojilkovic, S. S., and Catt, K. J. (1994). Glutamate modulates [Ca+2]i and gonadotropin-releasing hormone secretion in immortalized hypothalamic GT1-7 neurons.Neuroendocrinology59:309–317. [DOI] [PubMed] [Google Scholar]
  149. Stojilkovic, S. S., Merelli, F., Iida, T., Krsmanovic, L. Z., and Catt, K. J. (1990). Endothelin stimulation of cystolic calcium and gonadotropin secretion in anterior pituitary cells.Science248:1663–1666. [DOI] [PubMed] [Google Scholar]
  150. Urbanski, H. F., Fahy, M. M., Daschel, M., and Meschul, C. (1994). N-Methyl-D-aspartate receptor gene expression in the hamster hypothalamus and in immortalized luteinizing hormone-releasing hormone neurones.J. Reprod. Fertil.100:5–9. [DOI] [PubMed] [Google Scholar]
  151. Vale, W., Rivier, J., Vaughn, J., McClintock, R., Corrigan, A., Woo, W., Karr, D., and Spiess, J. (1986). Purification and characterization of a FSH releasing protein from porcine ovarian follicular fluid.Nature321:776–779. [DOI] [PubMed] [Google Scholar]
  152. Valença, M. M., Conte, D., and Negro-Vilar, A. (1985). Diacylglyercol and phorbol esters enhance LHRH and prostaglandin E2 secretion from median eminence nerve terminlsin vitro.Brain Res. Bull.15:657–659. [DOI] [PubMed] [Google Scholar]
  153. Valença, M. M., Wetsel, W. C., Culler, M. D., and Negro-Vilar, A. (1988). Differential secretion of proLHRH fragments in response to [K+], prostaglandin E2 and C kinase activation.Mol. Cell. Endocrinol.55:95–100. [DOI] [PubMed] [Google Scholar]
  154. Vijayan, E., and McCann, S. M. (1978). The effect of systemic administration of dopamine and apomorphine on plasma LH and prolactin concentrations in conscious rats.Neuroendocrinology25:221–235. [DOI] [PubMed] [Google Scholar]
  155. Weiner, R. I., Wetsel, W., Goldsmith, P., Martinez de la Escalera, G., Windle, J., Padula, C., Choi, A., Negro-Vilar, A., and Mellon, P. (1992). Gonadotropin-releasing hormone neuronal cell lines.Front. Neuroendo.13:95–119. [PubMed] [Google Scholar]
  156. Wetsel, W., and Negro-Vilar, A. (1989a). Combined antibody-high performance liquid chromatography approach to assess prohormone processing.Methods Enzymol.168:517–545. [DOI] [PubMed] [Google Scholar]
  157. Wetsel, W. C., and Negro-Vilar, A. (1989b). Testosterone selectively influences protein kinase-C-coupled secretion of proluteinizing hormone-releasing hormone-derived peptides.Endocrinology125:538–547. [DOI] [PubMed] [Google Scholar]
  158. Wetsel, W. C., Culler, M. D., Johnson, C. A., and Negro-Vilar, A. (1988). Processing of the luteinizing hormone-releasing hormone precursor in the preoptic area and hypothalamus of the rat.Mol. Endocrinol.2:22–31. [DOI] [PubMed] [Google Scholar]
  159. Wetsel, W. C., Mellon, P. L., and Negro-Vilar, A. (1991). Metabolism of pro-luteinizing hormone-releasing hormone in immortalized hypothalamic neurons.Endocrinology129:1584–1595. [DOI] [PubMed] [Google Scholar]
  160. Wetsel, W. C., Valença, M. M., Merchenthaler, I., Liposits, Z., López, F. J., Weiner, R. I., Mellon, P. L., and Negro-Vilar, A. (1992a). Intrinsic pulsatile secretory activity of immortalized luteinizing hormone-releasing hormone-secreting neurons.Proc. Natl. Acad. Sci. USA89:4149–4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Wetsel, W., Merchenthaler, I., Liposits, Z., Lopez, F., and Negro-Vilar, A. (1992b). New tools and approaches in molecular and cellular neuroendocrinology. InAdvances en Endocrinologia Celular y Molecular (F. F. Casanueva and C. Diéguez, Eds.), Fundacion Ramon Areces, Madrid, Spain, pp. 271–287. [Google Scholar]
  162. Wetsel, W. C., Thomas, L., Hayflick, J. S., Rivera, H. R., Lautermilch, N., and Thomas, G. (1992c). The role of KEX2-Like endopeptidases in the cleavage of pro-LHRH.Endocr. Soc.74:453 (abstr.). [Google Scholar]
  163. Wetsel, W. C., Eraly, S. A., Whyte, D. B., and Mellon, P. L. (1993a). Regulation of gonadotropin-releasing hormone by protein kinase-A and -C in immortalized hypothalamic neurons.Endocrinology132:2360–2370. [DOI] [PubMed] [Google Scholar]
  164. Wetsel, W. C., Collins, S., Merchenthaler, I., Valença, M. M., Curtis, J., Eling, T. E., and Negro-Vilar, A. (1993b). Activation of LHRH release by phospholipase C (PLC) and A2 pathways from GT1-1 cells.Neurosci. Soc.23:618 (abstr.). [Google Scholar]
  165. Wetsel, W. C., Daniel, K., and Collins, S. (1994). Stimulation of LHRH secretion by activation of the EP3 subtype of the prostaglandin E2 receptor.Endocr. Soc.76:376 (abstr.). [Google Scholar]
  166. Windle, J., Weiner, R., and Mellon, P. (1990). Cell lines of the pituitary gonadotrope lineage derived by targeted oncogenesis in transgenic mice.Mol. Endocrinol.4;597–603. [DOI] [PubMed] [Google Scholar]
  167. Woller, M. J., and Terasawa, E. (1991). Infusion of neuropeptide Y into the stalk-medium eminence stimulatesin vivo release of luteinizing hormone-releasing hormone in gonadectomized rhesus monkeys.Endocrinology128:1144–1150. [DOI] [PubMed] [Google Scholar]
  168. Wong, K. H., Kendall, L. E., and Findell, P. R. (1991). Immortalized hypothalamic GnRH neurons (GT1 cells) possess alpha-2 adrenergic receptors.Endocr. Soc.73:461 (abstr.). [Google Scholar]
  169. Wray, S., Gabwiler, B. H., and Gainer, H. (1988). Slice cultures of LHRH neurons in the presence and absence of brainstem and pituitary.Peptides9:1151–1175. [DOI] [PubMed] [Google Scholar]
  170. Wray, S., Gant, P., and Gainer, H. (1989). Evidence that cells expressing luteinizing hormone-releasing hormone mRNA in the mouse are derived from progenitor cells in the olfactory placode.Proc. Natl. Acad. Sci. USA86:8132–8136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Yanagisawa, M., and Masaki, T. (1989). Molecular biology and biochemistry of the endothelins.Trends Pharmacol. Sci.10:374–378. [DOI] [PubMed] [Google Scholar]
  172. Yen, S. S. C. (1991). Hypothalamic gonadotropin-releasing hormone: Basic and clinical aspects. InBrain Endocrinology (M. Motta, Ed.), Raven Press, New York, pp. 245–280. [Google Scholar]
  173. Yeo, T. T., Dong, K. W., Jakubowski, M., Blum, M., and Roberts, J. L. (1991). Complex regulatory pathway of GnRH gene transcripts by forskolin, ionomycin and phorbol esters in the GT1 cell line.Soc. Neurosci.21:1361 (abstr.). [Google Scholar]
  174. Yeo, T. T., Dong, K. W., Zeng, Z., Yu, K. L., Blum, M., and Roberts, J. L. (1993). Transcriptional and post-transcriptional regulation of gonadotropin releasing hormone gene expression by the activation of protein kinase C pathway in a mouse hypothalamic GT1 cell line.Soc. Neurosci.23:618 (abstr.). [Google Scholar]
  175. Yu, K. L., Dong, K. W., Lackner, C., and Blum, M. (1991). Differential regulation of GnRH mRNA expression and GnRH secretion in GT-1 cell line: Responses to phorbol ester, calcium ionophore and forskolin.Endocr. Soc.73:460 (abstr.). [Google Scholar]

Articles from Cellular and Molecular Neurobiology are provided here courtesy of Springer

RESOURCES