Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Aug 1;486(Pt 3):605–614. doi: 10.1113/jphysiol.1995.sp020838

Target-derived factors regulate the expression of Ca(2+)-activated K+ currents in developing chick sympathetic neurones.

S Raucher 1, S E Dryer 1
PMCID: PMC1156550  PMID: 7473223

Abstract

1. The functional expression of Ca(2+)-activated K+ currents (IK(Ca)) and voltage-activated Ca2+ currents (ICa) was examined using whole-cell recordings from chick lumbar sympathetic neurones developing in situ and under various conditions in vitro. 2. Macroscopic IK(Ca) was expressed at low current density (< 0.01 mA cm-2) in neurones isolated at embryonic days 9-16 (E9-16). IK(Ca) was expressed at high densities (> 0.04 mA cm-2) at E17-19. By contrast, there was no significant difference in ICa density between sympathetic neurones isolated at E13 and E18. 3. When sympathetic neurones were isolated at E13 and maintained in vitro for 5 days, IK(Ca) was expressed at a significantly lower density (< 0.01 mA cm-2) than in neurones isolated acutely at E18 (> 0.04 mA cm-2). There was no difference in ICa density between neurones that developed in vitro and in situ. 4. When E13 sympathetic neurones were cultured for 5 days in the presence of a confluent layer of ventricular myocytes, they expressed IK(Ca) at a high density (> 0.04 mA cm-2), similar to that of E18 neurones that developed entirely in situ. Cardiac cell-conditioned medium produced similar effects. However, co-culture of sympathetic neurones with spinal cord explants did not allow for normal IK(Ca) expression in vitro. 5. Culturing sympathetic neurones in the presence of 5 ng ml-1 nerve growth factor (NGF) caused a significant increase in IK(Ca) density but this effect was only seen in 50% of cells examined. 6. The largest developmental changes in macroscopic IK(Ca) occur several days after other K+ currents and ICa are expressed at maximal density. The normal developmental expression of IK(Ca) is dependent upon extrinsic factors, including target-derived differentiation factors.

Full text

PDF
605

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair L. A., Dionne V. E. Developmental acquisition of Ca2+-sensitivity by K+ channels in spinal neurones. Nature. 1985 May 23;315(6017):329–331. doi: 10.1038/315329a0. [DOI] [PubMed] [Google Scholar]
  2. Chalazonitis A., Peterson E. R., Crain S. M. Nerve growth factor regulates the action potential duration of mature sensory neurons. Proc Natl Acad Sci U S A. 1987 Jan;84(1):289–293. doi: 10.1073/pnas.84.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chung S. K., Reinhart P. H., Martin B. L., Brautigan D., Levitan I. B. Protein kinase activity closely associated with a reconstituted calcium-activated potassium channel. Science. 1991 Aug 2;253(5019):560–562. doi: 10.1126/science.1857986. [DOI] [PubMed] [Google Scholar]
  4. Dourado M. M., Brumwell C., Wisgirda M. E., Jacob M. H., Dryer S. E. Target tissues and innervation regulate the characteristics of K+ currents in chick ciliary ganglion neurons developing in situ. J Neurosci. 1994 May;14(5 Pt 2):3156–3165. doi: 10.1523/JNEUROSCI.14-05-03156.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dourado M. M., Dryer S. E. Changes in the electrical properties of chick ciliary ganglion neurones during embryonic development. J Physiol. 1992 Apr;449:411–428. doi: 10.1113/jphysiol.1992.sp019093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dourado M. M., Dryer S. E. Regulation of A-currents by cell-cell interactions and neurotrophic factors in developing chick parasympathetic neurones. J Physiol. 1994 Feb 1;474(3):367–377. doi: 10.1113/jphysiol.1994.sp020029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dryer S. E., Chiappinelli V. A. An intracellular study of synaptic transmission and dendritic morphology in sympathetic neurons of the chick embryo. Brain Res. 1985 Sep;354(1):99–111. doi: 10.1016/0165-3806(85)90073-2. [DOI] [PubMed] [Google Scholar]
  8. Dryer S. E., Dourado M. M., Wisgirda M. E. Characteristics of multiple Ca(2+)-activated K+ channels in acutely dissociated chick ciliary-ganglion neurones. J Physiol. 1991 Nov;443:601–627. doi: 10.1113/jphysiol.1991.sp018854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dryer S. E., Dourado M. M., Wisgirda M. E. Properties of Ca2+ currents in acutely dissociated neurons of the chick ciliary ganglion: inhibition by somatostatin-14 and somatostatin-28. Neuroscience. 1991;44(3):663–672. doi: 10.1016/0306-4522(91)90086-4. [DOI] [PubMed] [Google Scholar]
  10. Dryer S. E. Functional development of the parasympathetic neurons of the avian ciliary ganglion: a classic model system for the study of neuronal differentiation and development. Prog Neurobiol. 1994 Jun;43(3):281–322. doi: 10.1016/0301-0082(94)90003-5. [DOI] [PubMed] [Google Scholar]
  11. Ebendal T. Function and evolution in the NGF family and its receptors. J Neurosci Res. 1992 Aug;32(4):461–470. doi: 10.1002/jnr.490320402. [DOI] [PubMed] [Google Scholar]
  12. Gardette R., Listerud M. D., Brussaard A. B., Role L. W. Developmental changes in transmitter sensitivity and synaptic transmission in embryonic chicken sympathetic neurons innervated in vitro. Dev Biol. 1991 Sep;147(1):83–95. doi: 10.1016/s0012-1606(05)80009-0. [DOI] [PubMed] [Google Scholar]
  13. Gola M., Crest M. Colocalization of active KCa channels and Ca2+ channels within Ca2+ domains in helix neurons. Neuron. 1993 Apr;10(4):689–699. doi: 10.1016/0896-6273(93)90170-v. [DOI] [PubMed] [Google Scholar]
  14. Huang Y., Rane S. G. Single channel study of a Ca(2+)-activated K+ current associated with ras-induced cell transformation. J Physiol. 1993 Feb;461:601–618. doi: 10.1113/jphysiol.1993.sp019531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Mawe G. M., Gardette R., D'Agostaro L., Role L. W. Development of synaptic transmission at autonomic synapses in vitro revealed by cytochrome oxidase histochemistry. J Neurobiol. 1990 Jun;21(4):578–591. doi: 10.1002/neu.480210406. [DOI] [PubMed] [Google Scholar]
  16. McCobb D. P., Best P. M., Beam K. G. The differentiation of excitability in embryonic chick limb motoneurons. J Neurosci. 1990 Sep;10(9):2974–2984. doi: 10.1523/JNEUROSCI.10-09-02974.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. McFarlane S., Cooper E. Postnatal development of voltage-gated K currents on rat sympathetic neurons. J Neurophysiol. 1992 May;67(5):1291–1300. doi: 10.1152/jn.1992.67.5.1291. [DOI] [PubMed] [Google Scholar]
  18. Meech R. W., Standen N. B. Potassium activation in Helix aspersa neurones under voltage clamp: a component mediated by calcium influx. J Physiol. 1975 Jul;249(2):211–239. doi: 10.1113/jphysiol.1975.sp011012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Moss B. L., Role L. W. Enhanced ACh sensitivity is accompanied by changes in ACh receptor channel properties and segregation of ACh receptor subtypes on sympathetic neurons during innervation in vivo. J Neurosci. 1993 Jan;13(1):13–28. doi: 10.1523/JNEUROSCI.13-01-00013.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Nerbonne J. M., Gurney A. M. Development of excitable membrane properties in mammalian sympathetic neurons. J Neurosci. 1989 Sep;9(9):3272–3286. doi: 10.1523/JNEUROSCI.09-09-03272.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishi R. Target-derived molecules that influence the development of neurons in the avian ciliary ganglion. J Neurobiol. 1994 Jun;25(6):612–619. doi: 10.1002/neu.480250604. [DOI] [PubMed] [Google Scholar]
  22. O'Dowd D. K., Ribera A. B., Spitzer N. C. Development of voltage-dependent calcium, sodium, and potassium currents in Xenopus spinal neurons. J Neurosci. 1988 Mar;8(3):792–805. doi: 10.1523/JNEUROSCI.08-03-00792.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Raucher S., Dryer S. E. Functional expression of A-currents in embryonic chick sympathetic neurones during development in situ and in vitro. J Physiol. 1994 Aug 15;479(Pt 1):77–93. doi: 10.1113/jphysiol.1994.sp020279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ribera A. B., Spitzer N. C. Developmental regulation of potassium channels and the impact on neuronal differentiation. Ion Channels. 1992;3:1–38. doi: 10.1007/978-1-4615-3328-3_1. [DOI] [PubMed] [Google Scholar]
  25. Role L. W. Neural regulation of acetylcholine sensitivity in embryonic sympathetic neurons. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2825–2829. doi: 10.1073/pnas.85.8.2825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Rothman T. P., Gershon M. D., Holtzer H. The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev Biol. 1978 Aug;65(2):322–341. doi: 10.1016/0012-1606(78)90030-1. [DOI] [PubMed] [Google Scholar]
  27. Spitzer N. C. A developmental handshake: neuronal control of ionic currents and their control of neuronal differentiation. J Neurobiol. 1991 Oct;22(7):659–673. doi: 10.1002/neu.480220702. [DOI] [PubMed] [Google Scholar]
  28. Spitzer N. C., Gu X., Olson E. Action potentials, calcium transients and the control of differentiation of excitable cells. Curr Opin Neurobiol. 1994 Feb;4(1):70–77. doi: 10.1016/0959-4388(94)90034-5. [DOI] [PubMed] [Google Scholar]
  29. Wisgirda M. E., Dryer S. E. Divalent cations selectively alter the voltage dependence of inactivation of A-currents in chick autonomic neurons. Pflugers Arch. 1993 Jun;423(5-6):418–426. doi: 10.1007/BF00374936. [DOI] [PubMed] [Google Scholar]
  30. Wisgirda M. E., Dryer S. E. Functional dependence of Ca(2+)-activated K+ current on L- and N-type Ca2+ channels: differences between chicken sympathetic and parasympathetic neurons suggest different regulatory mechanisms. Proc Natl Acad Sci U S A. 1994 Mar 29;91(7):2858–2862. doi: 10.1073/pnas.91.7.2858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Yamamori T. Molecular mechanisms for generation of neural diversity and specificity: roles of polypeptide factors in development of postmitotic neurons. Neurosci Res. 1992 Jan;12(5):545–582. doi: 10.1016/0168-0102(92)90064-j. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES