Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Nov 15;489(Pt 1):95–104. doi: 10.1113/jphysiol.1995.sp021033

alpha-Adrenergic inhibition of the beta-adrenoceptor-dependent chloride current in guinea-pig ventricular myocytes.

I Iyadomi 1, K Hirahara 1, T Ehara 1
PMCID: PMC1156795  PMID: 8583419

Abstract

1. alpha 1-Adrenoceptor-mediated inhibition of the beta-adrenoceptor-dependent Cl- current was investigated in guinea-pig ventricular myocytes using the patch clamp technique. The Cl- conductance activated by noradrenaline (0.1-10 microM) with an alpha 1-blocker (prazosin, 5 microM) was significantly greater than that activated by noradrenaline alone. Phenylephrine and methoxamine, alpha 1-agonists, exerted an inhibitory effect on the Cl- conductance activated by isoprenaline. The dose-response relationship for isoprenaline and the Cl- current activation was shifted to higher doses in the presence of phenylephrine (30 microM). 2. The interaction of alpha 1- and beta-agonists on Cl- current was also observed on the single channel level; in some of the outside-out membrane patches, phenylephrine (50 microM) depressed the activity of the single Cl- channel which was induced by 5 microM adrenaline. 3. Phenylephrine had no effect on the Cl- conductance induced by forskolin (0.5-5 microM), an activator of adenylate cyclase. The Cl- conductance activated persistently by isoprenaline in GTP gamma S-loaded cells was also insensitive to phenylephrine. The results suggest that the observed alpha 1-adrenergic attenuation of the beta-adrenergic response is not primarily due to inhibition of adenylate cyclase activity. The alpha 1-adrenergic action may interfere with the processes leading to enzyme activation in the beta-adrenergic pathway.

Full text

PDF
102

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Axelrod J., Burch R. M., Jelsema C. L. Receptor-mediated activation of phospholipase A2 via GTP-binding proteins: arachidonic acid and its metabolites as second messengers. Trends Neurosci. 1988 Mar;11(3):117–123. doi: 10.1016/0166-2236(88)90157-9. [DOI] [PubMed] [Google Scholar]
  2. Bahinski A., Nairn A. C., Greengard P., Gadsby D. C. Chloride conductance regulated by cyclic AMP-dependent protein kinase in cardiac myocytes. Nature. 1989 Aug 31;340(6236):718–721. doi: 10.1038/340718a0. [DOI] [PubMed] [Google Scholar]
  3. Barrett S., Honbo N., Karliner J. S. Alpha 1-adrenoceptor-mediated inhibition of cellular cAMP accumulation in neonatal rat ventricular myocytes. Naunyn Schmiedebergs Arch Pharmacol. 1993 Apr;347(4):384–393. doi: 10.1007/BF00165388. [DOI] [PubMed] [Google Scholar]
  4. Bordoni A., Biagi P. L., Rossi C. A., Hrelia S. Alpha-1-stimulated phosphoinositide breakdown in cultured cardiomyocytes: diacylglycerol production and composition in docosahexaenoic acid supplemented cells. Biochem Biophys Res Commun. 1991 Jan 31;174(2):869–877. doi: 10.1016/0006-291x(91)91498-2. [DOI] [PubMed] [Google Scholar]
  5. Boutjdir M., Restivo M., Wei Y., el-Sherif N. Alpha 1- and beta-adrenergic interactions on L-type calcium current in cardiac myocytes. Pflugers Arch. 1992 Jul;421(4):397–399. doi: 10.1007/BF00374231. [DOI] [PubMed] [Google Scholar]
  6. Buxton I. L., Brunton L. L. Action of the cardiac alpha 1-adrenergic receptor. Activation of cyclic AMP degradation. J Biol Chem. 1985 Jun 10;260(11):6733–6737. [PubMed] [Google Scholar]
  7. Collier M. L., Hume J. R. Unitary chloride channels activated by protein kinase C in guinea pig ventricular myocytes. Circ Res. 1995 Feb;76(2):317–324. doi: 10.1161/01.res.76.2.317. [DOI] [PubMed] [Google Scholar]
  8. Eckel J., Gerlach-Eskuchen E., Reinauer H. Alpha-adrenoceptor-mediated increase in cytosolic free calcium in isolated cardiac myocytes. J Mol Cell Cardiol. 1991 May;23(5):617–625. doi: 10.1016/0022-2828(91)90053-o. [DOI] [PubMed] [Google Scholar]
  9. Egan T. M., Noble D., Noble S. J., Powell T., Twist V. W. An isoprenaline activated sodium-dependent inward current in ventricular myocytes. Nature. 1987 Aug 13;328(6131):634–637. doi: 10.1038/328634a0. [DOI] [PubMed] [Google Scholar]
  10. Ehara T., Ishihara K. Anion channels activated by adrenaline in cardiac myocytes. Nature. 1990 Sep 20;347(6290):284–286. doi: 10.1038/347284a0. [DOI] [PubMed] [Google Scholar]
  11. Ehara T., Matsuura H. Single-channel study of the cyclic AMP-regulated chloride current in guinea-pig ventricular myocytes. J Physiol. 1993 May;464:307–320. doi: 10.1113/jphysiol.1993.sp019636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fabiato A. Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Methods Enzymol. 1988;157:378–417. doi: 10.1016/0076-6879(88)57093-3. [DOI] [PubMed] [Google Scholar]
  13. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hartzell H. C. Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol. 1988;52(3):165–247. doi: 10.1016/0079-6107(88)90014-4. [DOI] [PubMed] [Google Scholar]
  16. Harvey R. D., Hume J. R. Autonomic regulation of a chloride current in heart. Science. 1989 May 26;244(4907):983–985. doi: 10.1126/science.2543073. [DOI] [PubMed] [Google Scholar]
  17. Hume J. R., Harvey R. D. Chloride conductance pathways in heart. Am J Physiol. 1991 Sep;261(3 Pt 1):C399–C412. doi: 10.1152/ajpcell.1991.261.3.C399. [DOI] [PubMed] [Google Scholar]
  18. Hwang T. C., Horie M., Nairn A. C., Gadsby D. C. Role of GTP-binding proteins in the regulation of mammalian cardiac chloride conductance. J Gen Physiol. 1992 Apr;99(4):465–489. doi: 10.1085/jgp.99.4.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
  20. Iwakura K., Hori M., Watanabe Y., Kitabatake A., Cragoe E. J., Jr, Yoshida H., Kamada T. Alpha 1-adrenoceptor stimulation increases intracellular pH and Ca2+ in cardiomyocytes through Na+/H+ and Na+/Ca2+ exchange. Eur J Pharmacol. 1990 Sep 4;186(1):29–40. doi: 10.1016/0014-2999(90)94057-5. [DOI] [PubMed] [Google Scholar]
  21. Jahnel U., Jakob H., Nawrath H. Electrophysiologic and inotropic effects of alpha-adrenoceptor stimulation in human isolated atrial heart muscle. Naunyn Schmiedebergs Arch Pharmacol. 1992 Jul;346(1):82–87. doi: 10.1007/BF00167575. [DOI] [PubMed] [Google Scholar]
  22. Keung E. C., Karliner J. S. Complex regulation of calcium current in cardiac cells. Dependence on a pertussis toxin-sensitive substrate, adenosine triphosphate, and an alpha 1-adrenoceptor. J Clin Invest. 1990 Mar;85(3):950–954. doi: 10.1172/JCI114524. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Matsuoka S., Ehara T., Noma A. Chloride-sensitive nature of the adrenaline-induced current in guinea-pig cardiac myocytes. J Physiol. 1990 Jun;425:579–598. doi: 10.1113/jphysiol.1990.sp018119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nagel G., Hwang T. C., Nastiuk K. L., Nairn A. C., Gadsby D. C. The protein kinase A-regulated cardiac Cl- channel resembles the cystic fibrosis transmembrane conductance regulator. Nature. 1992 Nov 5;360(6399):81–84. doi: 10.1038/360081a0. [DOI] [PubMed] [Google Scholar]
  25. Okumura K., Kawai T., Hashimoto H., Ito T., Ogawa K., Satake T. Sustained diacylglycerol formation in norepinephrine-stimulated rat heart is associated with alpha 1-adrenergic receptor. J Cardiovasc Pharmacol. 1988 Jun;11(6):651–656. doi: 10.1097/00005344-198806000-00004. [DOI] [PubMed] [Google Scholar]
  26. Otani H., Otani H., Das D. K. Alpha 1-adrenoceptor-mediated phosphoinositide breakdown and inotropic response in rat left ventricular papillary muscles. Circ Res. 1988 Jan;62(1):8–17. doi: 10.1161/01.res.62.1.8. [DOI] [PubMed] [Google Scholar]
  27. Poggioli J., Sulpice J. C., Vassort G. Inositol phosphate production following alpha 1-adrenergic, muscarinic or electrical stimulation in isolated rat heart. FEBS Lett. 1986 Oct 6;206(2):292–298. doi: 10.1016/0014-5793(86)80999-1. [DOI] [PubMed] [Google Scholar]
  28. Sen L., Liang B. T., Colucci W. S., Smith T. W. Enhanced alpha 1-adrenergic responsiveness in cardiomyopathic hamster cardiac myocytes. Relation to the expression of pertussis toxin-sensitive G protein and alpha 1-adrenergic receptors. Circ Res. 1990 Nov;67(5):1182–1192. doi: 10.1161/01.res.67.5.1182. [DOI] [PubMed] [Google Scholar]
  29. Tareen F. M., Ono K., Noma A., Ehara T. Beta-adrenergic and muscarinic regulation of the chloride current in guinea-pig ventricular cells. J Physiol. 1991;440:225–241. doi: 10.1113/jphysiol.1991.sp018705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Terzic A., Pucéat M., Vassort G., Vogel S. M. Cardiac alpha 1-adrenoceptors: an overview. Pharmacol Rev. 1993 Jun;45(2):147–175. [PubMed] [Google Scholar]
  31. Tohse N., Nakaya H., Kanno M. Alpha 1-adrenoceptor stimulation enhances the delayed rectifier K+ current of guinea pig ventricular cells through the activation of protein kinase C. Circ Res. 1992 Dec;71(6):1441–1446. doi: 10.1161/01.res.71.6.1441. [DOI] [PubMed] [Google Scholar]
  32. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
  33. Walsh K. B. Activation of a heart chloride current during stimulation of protein kinase C. Mol Pharmacol. 1991 Sep;40(3):342–346. [PubMed] [Google Scholar]
  34. Walsh K. B., Long K. J. Properties of a protein kinase C-activated chloride current in guinea pig ventricular myocytes. Circ Res. 1994 Jan;74(1):121–129. doi: 10.1161/01.res.74.1.121. [DOI] [PubMed] [Google Scholar]
  35. Zhang K., Barrington P. L., Martin R. L., Ten Eick R. E. Protein kinase-dependent Cl- currents in feline ventricular myocytes. Circ Res. 1994 Jul;75(1):133–143. doi: 10.1161/01.res.75.1.133. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES