Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Apr 1;484(Pt 1):41–52. doi: 10.1113/jphysiol.1995.sp020646

Classification of ion channels in the luminal and abluminal membranes of guinea-pig endocardial endothelial cells.

K Manabe 1, H Ito 1, H Matsuda 1, A Noma 1, Y Shibata 1
PMCID: PMC1157920  PMID: 7541462

Abstract

1. The ion channels on both the luminal and abluminal membranes of endocardial endothelial (EE) cells were separately recorded using the patch clamp technique in the guinea-pig heart. 2. The major population consisted of two types of non-selective cation channels, which showed open probabilities of 0.21 and 0.33 at the resting potential, and conductances of 36 and 11 pS, respectively. 3. The next major class was Cl- channels with an ohmic conductance of 409 pS. The channel was quiescent in the cell-attached mode but was activated by strong depolarization after excising the patch membrane. 4. The channels activated by intracellular Ca2+ were mainly K+ channels showing a 34 pS slope conductance and, less frequently, Ca(2+)-dependent K+ channels having a large conductance (210 pS). The inward rectifier K+ channel (32 pS) was also observed. 5. The non-selective cation channels were recorded on the luminal membrane, but scarcely on the abluminal membrane, suggesting an active transport of K+ and Na+ across the endocardium. 6. The resting membrane conductance of the EE cells may be provided mostly by non-selective cation channels and 34 pS Ca(2+)-dependent K+ channels.

Full text

PDF
43

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams D. J., Barakeh J., Laskey R., Van Breemen C. Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J. 1989 Oct;3(12):2389–2400. doi: 10.1096/fasebj.3.12.2477294. [DOI] [PubMed] [Google Scholar]
  2. Betz A. L., Firth J. A., Goldstein G. W. Polarity of the blood-brain barrier: distribution of enzymes between the luminal and antiluminal membranes of brain capillary endothelial cells. Brain Res. 1980 Jun 16;192(1):17–28. doi: 10.1016/0006-8993(80)91004-5. [DOI] [PubMed] [Google Scholar]
  3. Betz A. L., Goldstein G. W. Specialized properties and solute transport in brain capillaries. Annu Rev Physiol. 1986;48:241–250. doi: 10.1146/annurev.ph.48.030186.001325. [DOI] [PubMed] [Google Scholar]
  4. Bregestovski P., Bakhramov A., Danilov S., Moldobaeva A., Takeda K. Histamine-induced inward currents in cultured endothelial cells from human umbilical vein. Br J Pharmacol. 1988 Oct;95(2):429–436. doi: 10.1111/j.1476-5381.1988.tb11663.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brutsaert D. L., Andries L. J. The endocardial endothelium. Am J Physiol. 1992 Oct;263(4 Pt 2):H985–1002. doi: 10.1152/ajpheart.1992.263.4.H985. [DOI] [PubMed] [Google Scholar]
  6. Brutsaert D. L. The endocardium. Annu Rev Physiol. 1989;51:263–273. doi: 10.1146/annurev.ph.51.030189.001403. [DOI] [PubMed] [Google Scholar]
  7. Cannell M. B., Sage S. O. Bradykinin-evoked changes in cytosolic calcium and membrane currents in cultured bovine pulmonary artery endothelial cells. J Physiol. 1989 Dec;419:555–568. doi: 10.1113/jphysiol.1989.sp017886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Colden-Stanfield M., Cramer E. B., Gallin E. K. Comparison of apical and basal surfaces of confluent endothelial cells: patch-clamp and viral studies. Am J Physiol. 1992 Sep;263(3 Pt 1):C573–C583. doi: 10.1152/ajpcell.1992.263.3.C573. [DOI] [PubMed] [Google Scholar]
  9. DeRenzis F. A., Schechtman A. Staining by neutral red and trypan blue in sequence for assaying vital and nonvital cultured cells. Stain Technol. 1973 May;48(3):135–136. doi: 10.3109/10520297309116602. [DOI] [PubMed] [Google Scholar]
  10. DiBona D. R., Mills J. W. Distribution of Na+-pump sites in transporting epithelia. Fed Proc. 1979 Feb;38(2):134–143. [PubMed] [Google Scholar]
  11. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  12. Fichtner H., Fröbe U., Busse R., Kohlhardt M. Single nonselective cation channels and Ca2+-activated K+ channels in aortic endothelial cells. J Membr Biol. 1987;98(2):125–133. doi: 10.1007/BF01872125. [DOI] [PubMed] [Google Scholar]
  13. Geibel J., Zweifach A., White S., Wang W. H., Giebisch G. K+ channels of the mammalian collecting duct. Ren Physiol Biochem. 1990 Jan-Apr;13(1-2):59–69. doi: 10.1159/000173348. [DOI] [PubMed] [Google Scholar]
  14. Groschner K., Kukovetz W. R. Voltage-sensitive chloride channels of large conductance in the membrane of pig aortic endothelial cells. Pflugers Arch. 1992 Jun;421(2-3):209–217. doi: 10.1007/BF00374829. [DOI] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Ito H., Matsuda H., Noma A. Ion channels in the luminal membrane of endothelial cells of the bull-frog heart. Jpn J Physiol. 1993;43(2):191–206. doi: 10.2170/jjphysiol.43.191. [DOI] [PubMed] [Google Scholar]
  17. Lansman J. B., Hallam T. J., Rink T. J. Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? 1987 Feb 26-Mar 4Nature. 325(6107):811–813. doi: 10.1038/325811a0. [DOI] [PubMed] [Google Scholar]
  18. Laskey R. E., Adams D. J., Johns A., Rubanyi G. M., van Breemen C. Membrane potential and Na(+)-K+ pump activity modulate resting and bradykinin-stimulated changes in cytosolic free calcium in cultured endothelial cells from bovine atria. J Biol Chem. 1990 Feb 15;265(5):2613–2619. [PubMed] [Google Scholar]
  19. Manabe K., Ito H., Matsuda H., Noma A. Hyperpolarization induced by vasoactive substances in intact guinea-pig endocardial endothelial cells. J Physiol. 1995 Apr 1;484(Pt 1):25–40. doi: 10.1113/jphysiol.1995.sp020645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mendelowitz D., Bacal K., Kunze D. L. Bradykinin-activated calcium influx pathway in bovine aortic endothelial cells. Am J Physiol. 1992 Apr;262(4 Pt 2):H942–H948. doi: 10.1152/ajpheart.1992.262.4.H942. [DOI] [PubMed] [Google Scholar]
  21. Newman E. A. Distribution of potassium conductance in mammalian Müller (glial) cells: a comparative study. J Neurosci. 1987 Aug;7(8):2423–2432. [PMC free article] [PubMed] [Google Scholar]
  22. Nilius B., Droogmans G., Gericke M., Schwarz G. Nonselective ion pathways in human endothelial cells. EXS. 1993;66:269–280. doi: 10.1007/978-3-0348-7327-7_21. [DOI] [PubMed] [Google Scholar]
  23. Nilius B. Permeation properties of a non-selective cation channel in human vascular endothelial cells. Pflugers Arch. 1990 Jul;416(5):609–611. doi: 10.1007/BF00382697. [DOI] [PubMed] [Google Scholar]
  24. Nilius B., Riemann D. Ion channels in human endothelial cells. Gen Physiol Biophys. 1990 Apr;9(2):89–111. [PubMed] [Google Scholar]
  25. Olesen S. P., Bundgaard M. Chloride-selective channels of large conductance in bovine aortic endothelial cells. Acta Physiol Scand. 1992 Feb;144(2):191–198. doi: 10.1111/j.1748-1716.1992.tb09285.x. [DOI] [PubMed] [Google Scholar]
  26. Patlak J. B. Sodium channel subconductance levels measured with a new variance-mean analysis. J Gen Physiol. 1988 Oct;92(4):413–430. doi: 10.1085/jgp.92.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Popp R., Hoyer J., Meyer J., Galla H. J., Gögelein H. Stretch-activated non-selective cation channels in the antiluminal membrane of porcine cerebral capillaries. J Physiol. 1992 Aug;454:435–449. doi: 10.1113/jphysiol.1992.sp019272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rusko J., Tanzi F., van Breemen C., Adams D. J. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block. J Physiol. 1992 Sep;455:601–621. doi: 10.1113/jphysiol.1992.sp019318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Takeda K., Klepper M. Voltage-dependent and agonist-activated ionic currents in vascular endothelial cells: a review. Blood Vessels. 1990;27(2-5):169–183. doi: 10.1159/000158808. [DOI] [PubMed] [Google Scholar]
  30. Tsien R. Y., Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium. Biochim Biophys Acta. 1980 Jul;599(2):623–638. doi: 10.1016/0005-2736(80)90205-9. [DOI] [PubMed] [Google Scholar]
  31. Yamamoto Y., Chen G., Miwa K., Suzuki H. Permeability and Mg2+ blockade of histamine-operated cation channel in endothelial cells of rat intrapulmonary artery. J Physiol. 1992 May;450:395–408. doi: 10.1113/jphysiol.1992.sp019133. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES