Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Apr 1;484(Pt 1):247–254. doi: 10.1113/jphysiol.1995.sp020662

The control of mono-articular muscles in multijoint leg extensions in man.

G J van Ingen Schenau 1, W M Dorssers 1, T G Welter 1, A Beelen 1, G de Groot 1, R Jacobs 1
PMCID: PMC1157936  PMID: 7602524

Abstract

1. Movements often require control of direction and a magnitude of force exerted externally on the environment. Bi-articular upper leg muscles appear to play a unique role in the regulation of the net torques about the hip and knee joints, necessary for the control of this external force. 2. The aim of this study was to test the hypothesis that the mono-articular muscles act as work generators in powerful dynamic leg extensions, which means that they should be activated primarily in the phases during which they can contribute to work, irrespective of the net joint torques required to control the external force. 3. Cycling movements of six trained subjects were analysed by means of inverse dynamics, yielding net joint torques as well as activity patterns and shortening velocities of four mono- and four bi-articular leg muscles. 4. The results show that the mono-articular muscles exert force only in the phase in which these muscles shorten, whereas this appears not to be the case for the bi-articular muscles. 5. Reciprocal patterns of activation of the rectus femoris and hamstring muscles appear to tune the distribution of net joint torques about the hip and knee joints, necessary to control the (changing) direction of the force on the pedal. 6. An analysis of running in man and additional related literature based on animal studies appears to provide further support for the hypothesis that mono- and bi-articular muscles have essentially different roles in these powerful multijoint leg extension tasks.

Full text

PDF
250

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aniss A. M., Gandevia S. C., Burke D. Reflex changes in muscle spindle discharge during a voluntary contraction. J Neurophysiol. 1988 Mar;59(3):908–921. doi: 10.1152/jn.1988.59.3.908. [DOI] [PubMed] [Google Scholar]
  2. Bekoff A., Nusbaum M. P., Sabichi A. L., Clifford M. Neural control of limb coordination. I. Comparison of hatching and walking motor output patterns in normal and deafferented chicks. J Neurosci. 1987 Aug;7(8):2320–2330. [PMC free article] [PubMed] [Google Scholar]
  3. Buford J. A., Smith J. L. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies. J Neurophysiol. 1990 Sep;64(3):756–766. doi: 10.1152/jn.1990.64.3.756. [DOI] [PubMed] [Google Scholar]
  4. Ericson M. O., Bratt A., Nisell R., Arborelius U. P., Ekholm J. Power output and work in different muscle groups during ergometer cycling. Eur J Appl Physiol Occup Physiol. 1986;55(3):229–235. doi: 10.1007/BF02343792. [DOI] [PubMed] [Google Scholar]
  5. Gregor R. J., Cavanagh P. R., LaFortune M. Knee flexor moments during propulsion in cycling--a creative solution to Lombard's Paradox. J Biomech. 1985;18(5):307–316. doi: 10.1016/0021-9290(85)90286-6. [DOI] [PubMed] [Google Scholar]
  6. Griffiths R. I. Shortening of muscle fibres during stretch of the active cat medial gastrocnemius muscle: the role of tendon compliance. J Physiol. 1991 May;436:219–236. doi: 10.1113/jphysiol.1991.sp018547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. INMAN V. T., RALSTON H. J., SAUNDERS J. B., FEINSTEIN B., WRIGHT E. W., Jr Relation of human electromyogram to muscular tension. Electroencephalogr Clin Neurophysiol. 1952 May;4(2):187–194. doi: 10.1016/0013-4694(52)90008-4. [DOI] [PubMed] [Google Scholar]
  8. Jacobs R., Bobbert M. F., van Ingen Schenau G. J. Function of mono- and biarticular muscles in running. Med Sci Sports Exerc. 1993 Oct;25(10):1163–1173. [PubMed] [Google Scholar]
  9. Jacobs R., van Ingen Schenau G. J. Control of an external force in leg extensions in humans. J Physiol. 1992 Nov;457:611–626. doi: 10.1113/jphysiol.1992.sp019397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Loeb G. E., Hoffer J. A., Marks W. B. Activity of spindle afferents from cat anterior thigh muscles. III. Effects of external stimuli. J Neurophysiol. 1985 Sep;54(3):578–591. doi: 10.1152/jn.1985.54.3.578. [DOI] [PubMed] [Google Scholar]
  11. Nichols T. R. The organization of heterogenic reflexes among muscles crossing the ankle joint in the decerebrate cat. J Physiol. 1989 Mar;410:463–477. doi: 10.1113/jphysiol.1989.sp017544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Németh G., Ohlsén H. In vivo moment arm lengths for hip extensor muscles at different angles of hip flexion. J Biomech. 1985;18(2):129–140. doi: 10.1016/0021-9290(85)90005-3. [DOI] [PubMed] [Google Scholar]
  13. Perret C., Cabelguen J. M. Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles. Brain Res. 1980 Apr 14;187(2):333–352. doi: 10.1016/0006-8993(80)90207-3. [DOI] [PubMed] [Google Scholar]
  14. Pratt C. A., Chanaud C. M., Loeb G. E. Functionally complex muscles of the cat hindlimb. IV. Intramuscular distribution of movement command signals and cutaneous reflexes in broad, bifunctional thigh muscles. Exp Brain Res. 1991;85(2):281–299. doi: 10.1007/BF00229407. [DOI] [PubMed] [Google Scholar]
  15. Suzuki S., Watanabe S., Homma S. EMG activity and kinematics of human cycling movements at different constant velocities. Brain Res. 1982 May 27;240(2):245–258. doi: 10.1016/0006-8993(82)90220-7. [DOI] [PubMed] [Google Scholar]
  16. Vidal C., Viala D., Buser P. Central locomotor programming in the rabbit. Brain Res. 1979 May 18;168(1):57–73. doi: 10.1016/0006-8993(79)90128-8. [DOI] [PubMed] [Google Scholar]
  17. Visser J. J., Hoogkamer J. E., Bobbert M. F., Huijing P. A. Length and moment arm of human leg muscles as a function of knee and hip-joint angles. Eur J Appl Physiol Occup Physiol. 1990;61(5-6):453–460. doi: 10.1007/BF00236067. [DOI] [PubMed] [Google Scholar]
  18. Vos E. J., Harlaar J., van Ingen Schenau G. J. Electromechanical delay during knee extensor contractions. Med Sci Sports Exerc. 1991 Oct;23(10):1187–1193. [PubMed] [Google Scholar]
  19. Walmsley B., Hodgson J. A., Burke R. E. Forces produced by medial gastrocnemius and soleus muscles during locomotion in freely moving cats. J Neurophysiol. 1978 Sep;41(5):1203–1216. doi: 10.1152/jn.1978.41.5.1203. [DOI] [PubMed] [Google Scholar]
  20. van Ingen Schenau G. J., Bobbert M. F. The global design of the hindlimb in quadrupeds. Acta Anat (Basel) 1993;146(2-3):103–108. doi: 10.1159/000147429. [DOI] [PubMed] [Google Scholar]
  21. van Ingen Schenau G. J., Boots P. J., de Groot G., Snackers R. J., van Woensel W. W. The constrained control of force and position in multi-joint movements. Neuroscience. 1992;46(1):197–207. doi: 10.1016/0306-4522(92)90019-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES