Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 May 15;485(Pt 1):195–202. doi: 10.1113/jphysiol.1995.sp020723

Warm and cold signals from the preoptic area: which contribute more to the control of shivering in rats?

Y H Zhang 1, M Yanase-Fujiwara 1, T Hosono 1, K Kanosue 1
PMCID: PMC1157983  PMID: 7658373

Abstract

1. To find out whether the thermosensitive neurones in the preoptic area that control shivering are predominantly warm or cold sensitive, we tested the effects of injecting the excitatory amino acid L-glutamate at various sites in and adjacent to the preoptic area of anaesthetized rats shivering at ambient temperatures of 15-21 degrees C. 2. L-Glutamate injections (0.2 mM in 0.5-1.0 microliter), as well as preoptic warming and electrical stimulation, suppressed shivering, whereas control saline injections had no effect. Effective sites were restricted to the anterior part of the preoptic area, and a tenfold lower concentration of L-glutamate did not influence shivering. 3. Injections of procaine (0.2 M) into the sites where L-glutamate suppressed shivering did not affect strong shivering activity, but facilitated shivering in three out of seven cases when shivering was weak or absent at higher ambient temperatures (25-30 degrees C). 4. L-Glutamate injections, as well as preoptic warming and electrical stimulation, also elicited vasodilatation of the paw skin and the tail. Procaine elicited vasoconstriction when it was applied during vasodilatation induced by local preoptic warming. 5. These results indicate that the contribution of the preoptic area to the control of shivering and vasomotion is influenced more by signals from warm-sensitive neurones than by signals from cold-sensitive neurones.

Full text

PDF
201

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSEN H. T., ANDERSSON B., GALE C. Central control of cold defense mechanisms and the release of "endopyrogen" in the goat. Acta Physiol Scand. 1962 Feb;54:159–174. doi: 10.1111/j.1748-1716.1962.tb02341.x. [DOI] [PubMed] [Google Scholar]
  2. Benzinger T. H., Pratt A. W., Kitzinger C. THE THERMOSTATIC CONTROL OF HUMAN METABOLIC HEAT PRODUCTION. Proc Natl Acad Sci U S A. 1961 May;47(5):730–739. doi: 10.1073/pnas.47.5.730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boulant J. A. The effect of firing rate on preoptic neuronal thermosensitivity. J Physiol. 1974 Aug;240(3):661–669. doi: 10.1113/jphysiol.1974.sp010628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Eisenman J. S., Jackson D. C. Thermal response patterns of septal and preoptic neurons in cats. Exp Neurol. 1967 Sep;19(1):33–45. doi: 10.1016/0014-4886(67)90005-2. [DOI] [PubMed] [Google Scholar]
  5. HAMMEL H. T., HARDY J. D., FUSCO M. M. Thermoregulatory responses to hypothalamic cooling in unanesthetized dogs. Am J Physiol. 1960 Mar;198:481–486. doi: 10.1152/ajplegacy.1960.198.3.481. [DOI] [PubMed] [Google Scholar]
  6. Hammel H. T. Regulation of internal body temperature. Annu Rev Physiol. 1968;30:641–710. doi: 10.1146/annurev.ph.30.030168.003233. [DOI] [PubMed] [Google Scholar]
  7. Hori T. An update on thermosensitive neurons in the brain: from cellular biology to thermal and non-thermal homeostatic functions. Jpn J Physiol. 1991;41(1):1–22. doi: 10.2170/jjphysiol.41.1. [DOI] [PubMed] [Google Scholar]
  8. Hori T., Nakashima T., Kiyohara T., Shibata M., Hori N. Effect of calcium removal on thermosensitivity of preoptic neurons in hypothalamic slices. Neurosci Lett. 1980 Nov;20(2):171–175. doi: 10.1016/0304-3940(80)90141-x. [DOI] [PubMed] [Google Scholar]
  9. Kanosue K., Yanase-Fujiwara M., Hosono T. Hypothalamic network for thermoregulatory vasomotor control. Am J Physiol. 1994 Jul;267(1 Pt 2):R283–R288. doi: 10.1152/ajpregu.1994.267.1.R283. [DOI] [PubMed] [Google Scholar]
  10. Kanosue K., Zhang Y. H., Yanase-Fujiwara M., Hosono T. Hypothalamic network for thermoregulatory shivering. Am J Physiol. 1994 Jul;267(1 Pt 2):R275–R282. doi: 10.1152/ajpregu.1994.267.1.R275. [DOI] [PubMed] [Google Scholar]
  11. Kelso S. R., Boulant J. A. Effect of synaptic blockade on thermosensitive neurons in hypothalamic tissue slices. Am J Physiol. 1982 Nov;243(5):R480–R490. doi: 10.1152/ajpregu.1982.243.5.R480. [DOI] [PubMed] [Google Scholar]
  12. Kiyohara T., Hirata M., Hori T., Akaike N. Hypothalamic warm-sensitive neurons possess a tetrodotoxin-sensitive sodium channel with a high Q10. Neurosci Res. 1990 Apr;8(1):48–53. doi: 10.1016/0168-0102(90)90056-k. [DOI] [PubMed] [Google Scholar]
  13. NAKAYAMA T., EISENMAN J. S., HARDY J. D. Single unit activity of anterior hypothalamus during local heating. Science. 1961 Aug 25;134(3478):560–561. doi: 10.1126/science.134.3478.560. [DOI] [PubMed] [Google Scholar]
  14. Nakayama T. Thermosensitive neurons in the brain. Jpn J Physiol. 1985;35(3):375–389. doi: 10.2170/jjphysiol.35.375. [DOI] [PubMed] [Google Scholar]
  15. Wyndham C. H., Atkins A. R. A physiological scheme and mathematical model of temperature regulation in man. Pflugers Arch. 1968;303(1):14–30. doi: 10.1007/BF00586824. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES