Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1995 Jun 1;485(Pt 2):525–530. doi: 10.1113/jphysiol.1995.sp020748

Hypoxia-induced brain angiogenesis in the adult rat.

S I Harik 1, M A Hritz 1, J C LaManna 1
PMCID: PMC1158011  PMID: 7545234

Abstract

1. Prolonged hypoxia increases the brain vascularity. Here we studied the protein and deoxyribonucleic acid (DNA) content of isolated cerebral microvessels in hypoxic and control rats. 2. Adult male Wistar rats that were subjected to hypobaric hypoxia at 50.5 kPa (0.5 atm) for periods of 1, 2, or 3 weeks and normoxic littermate controls were used. Cerebral microvessels were harvested by bulk isolation from the pooled cortical mantles of three to six rats in each group. The isolated microvessels were assayed for their protein and DNA content. 3. Microvessel protein yield increased from 0.31 to 0.45 mg of microvessel protein (g wet wt)-1 of cerebral cortex after 1 week of hypoxia, but did not increase further during up to 3 weeks of hypoxia. In contrast, microvessel DNA yield did not increase during the first week of hypoxia, but increased significantly after 2 weeks of hypoxia and continued to increase up to 56 micrograms of microvessel DNA (g cerebral cortex)-1 at 3 weeks of hypoxia (normoxic mean was 32 micrograms DNA g-1). 4. The cell size index (mg protein:mg DNA) of isolated cerebral microvessels increased after 1 week of hypoxia, suggesting microvascular hypertrophy, but returned to control by the second week of hypoxia and decreased to below control levels by the third week of hypoxia, suggesting microvascular hyperplasia. These results indicate that the increased vascularity of the brain in hypobaric hypoxia progresses from an early phase of microvascular hypertrophy to later microvascular hyperplasia.

Full text

PDF
526

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Black J. E., Zelazny A. M., Greenough W. T. Capillary and mitochondrial support of neural plasticity in adult rat visual cortex. Exp Neurol. 1991 Feb;111(2):204–209. doi: 10.1016/0014-4886(91)90008-z. [DOI] [PubMed] [Google Scholar]
  2. Blin N., Stafford D. W. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res. 1976 Sep;3(9):2303–2308. doi: 10.1093/nar/3.9.2303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borowsky I. W., Collins R. C. Metabolic anatomy of brain: a comparison of regional capillary density, glucose metabolism, and enzyme activities. J Comp Neurol. 1989 Oct 15;288(3):401–413. doi: 10.1002/cne.902880304. [DOI] [PubMed] [Google Scholar]
  4. Bär T. Patterns of vascularization in the developing cerebral cortex. Ciba Found Symp. 1983;100:20–36. doi: 10.1002/9780470720813.ch3. [DOI] [PubMed] [Google Scholar]
  5. Bär T. The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol. 1980;59:I-VI,1-62. doi: 10.1007/978-3-642-67432-7. [DOI] [PubMed] [Google Scholar]
  6. Cervós-Navarro J., Sampaolo S., Hamdorf G. Brain changes in experimental chronic hypoxia. Exp Pathol. 1991;42(4):205–212. doi: 10.1016/s0232-1513(11)80067-8. [DOI] [PubMed] [Google Scholar]
  7. Engerman R. L., Pfaffenbach D., Davis M. D. Cell turnover of capillaries. Lab Invest. 1967 Dec;17(6):738–743. [PubMed] [Google Scholar]
  8. Haddad G. G., Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol. 1993 Mar;40(3):277–318. doi: 10.1016/0301-0082(93)90014-j. [DOI] [PubMed] [Google Scholar]
  9. Harik S. I., Behmand R. A., LaManna J. C. Hypoxia increases glucose transport at blood-brain barrier in rats. J Appl Physiol (1985) 1994 Aug;77(2):896–901. doi: 10.1152/jappl.1994.77.2.896. [DOI] [PubMed] [Google Scholar]
  10. Harik S. I., Doull G. H., Dick A. P. Specific ouabain binding to brain microvessels and choroid plexus. J Cereb Blood Flow Metab. 1985 Mar;5(1):156–160. doi: 10.1038/jcbfm.1985.20. [DOI] [PubMed] [Google Scholar]
  11. Isaacs K. R., Anderson B. J., Alcantara A. A., Black J. E., Greenough W. T. Exercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab. 1992 Jan;12(1):110–119. doi: 10.1038/jcbfm.1992.14. [DOI] [PubMed] [Google Scholar]
  12. Klein B., Kuschinsky W., Schröck H., Vetterlein F. Interdependency of local capillary density, blood flow, and metabolism in rat brains. Am J Physiol. 1986 Dec;251(6 Pt 2):H1333–H1340. doi: 10.1152/ajpheart.1986.251.6.H1333. [DOI] [PubMed] [Google Scholar]
  13. Kreisman N. R., Sick T. J., LaManna J. C., Rosenthal M. Local tissue oxygen tension-cytochrome a,a3 redox relationships in rat cerebral cortex in vivo. Brain Res. 1981 Aug 10;218(1-2):161–174. doi: 10.1016/0006-8993(81)91298-1. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. LaManna J. C., Vendel L. M., Farrell R. M. Brain adaptation to chronic hypobaric hypoxia in rats. J Appl Physiol (1985) 1992 Jun;72(6):2238–2243. doi: 10.1152/jappl.1992.72.6.2238. [DOI] [PubMed] [Google Scholar]
  16. Miller A. T., Jr, Hale D. M. Increased vascularity of brain, heart, and skeletal muscle of polycythemic rats. Am J Physiol. 1970 Sep;219(3):702–704. doi: 10.1152/ajplegacy.1970.219.3.702. [DOI] [PubMed] [Google Scholar]
  17. OPITZ E. Increased vascularization of the tissue due to acclimatization to high altitude and its significance for the oxygen transport. Exp Med Surg. 1951 May-Nov;9(2-4):389–403. [PubMed] [Google Scholar]
  18. Poole D. C., Mathieu-Costello O. Skeletal muscle capillary geometry: adaptation to chronic hypoxia. Respir Physiol. 1989 Jul;77(1):21–29. doi: 10.1016/0034-5687(89)90026-1. [DOI] [PubMed] [Google Scholar]
  19. Sholley M. M., Ferguson G. P., Seibel H. R., Montour J. L., Wilson J. D. Mechanisms of neovascularization. Vascular sprouting can occur without proliferation of endothelial cells. Lab Invest. 1984 Dec;51(6):624–634. [PubMed] [Google Scholar]
  20. Sick T. J., Lutz P. L., LaManna J. C., Rosenthal M. Comparative brain oxygenation and mitochondrial redox activity in turtles and rats. J Appl Physiol Respir Environ Exerc Physiol. 1982 Dec;53(6):1354–1359. doi: 10.1152/jappl.1982.53.6.1354. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES