Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 May 1;203(2):511–513. doi: 10.1042/bj2030511

The inhibitory effect of Zn2+ on poly(ADP-ribose) polymerase activity and its reversal.

A G Larsen, A C Ostvold, J Holtlund, T Kristensen, S G Laland
PMCID: PMC1158257  PMID: 6288004

Abstract

Zn2+ inhibits purified poly(ADP-ribose) polymerase (50% inhibition at 10 microM). Furthermore poly (ADP-ribose) polymerase present in nuclei and metaphase chromosome clusters is also inhibited by Zn2+. The inactivated enzyme could be re-activated by dithiothreitol. The concentration of Zn2+ needed to affect the enzyme activity in the organelles is sufficiently low for it to have a possible role in controlling the activity of this chromatin-bound enzyme.

Full text

PDF
513

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Elliott J. I., Brewer J. M. Binding of inhibitory metals to yeast enolase. J Inorg Biochem. 1980 Jul;12(4):323–334. doi: 10.1016/s0162-0134(00)80273-1. [DOI] [PubMed] [Google Scholar]
  2. Gracy R. W., Noltmann E. A. Studies on phosphomannose isomerase. II. Characterization as a zinc metalloenzyme. J Biol Chem. 1968 Aug 10;243(15):4109–4116. [PubMed] [Google Scholar]
  3. Holtlund J., Kristensen T., Ostvold A. C., Laland S. G. On the presence of poly(ADP-ribose) polymerase activity in metaphase chromosomes from HeLa S3 cells. FEBS Lett. 1980 Jul 11;116(1):11–13. doi: 10.1016/0014-5793(80)80517-5. [DOI] [PubMed] [Google Scholar]
  4. Holtlund J., Kristensen T., Sletten K. Poly(ADP-ribose) polymerase from Ehrlich ascites-tumour cells. Amino acid composition, N-terminal analysis and chemical cleavage of the purified protein. Biochem J. 1980 Mar 1;185(3):779–782. doi: 10.1042/bj1850779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ito S., Shizuta Y., Hayaishi O. Purification and characterization of poly(ADP-ribose) synthetase from calf thymus. J Biol Chem. 1979 May 10;254(9):3647–3651. [PubMed] [Google Scholar]
  6. Paulson J. R. Sulfhydryl reagents prevent dephosphorylation and proteolysis of histones in isolated HeLa metaphase chromosomes. Eur J Biochem. 1980 Oct;111(1):189–197. doi: 10.1111/j.1432-1033.1980.tb06092.x. [DOI] [PubMed] [Google Scholar]
  7. Prasad A. S. Clinical, biochemical, and pharmacological role of zinc. Annu Rev Pharmacol Toxicol. 1979;19:393–426. doi: 10.1146/annurev.pa.19.040179.002141. [DOI] [PubMed] [Google Scholar]
  8. Shin Y. A., Eichhorn G. L. Interactions of metal ions with polynucleotides and related compounds. XI. The reversible unwinding and rewinding of deoxyribonucleic acid by zinc (II) Ions through temperature manipulation. Biochemistry. 1968 Mar;7(3):1026–1032. doi: 10.1021/bi00843a022. [DOI] [PubMed] [Google Scholar]
  9. Weser U., Bischoff E. Incorporation of 65Zn in rat liver nuclei. Eur J Biochem. 1970 Feb;12(3):571–575. doi: 10.1111/j.1432-1033.1970.tb00888.x. [DOI] [PubMed] [Google Scholar]
  10. Wester P. O. Concentration of 17 elements in subcellular fractions of beef heart tissue determined by neutron activation analysis. Biochim Biophys Acta. 1965 Sep 27;109(1):268–283. doi: 10.1016/0926-6585(65)90111-1. [DOI] [PubMed] [Google Scholar]
  11. Whitlock J. P., Jr, Simpson R. T. Preparation and physical characterization of a homogeneous population of monomeric nucleosomes from HeLa cells. Nucleic Acids Res. 1976 Sep;3(9):2255–2266. doi: 10.1093/nar/3.9.2255. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES