Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Jun 1;203(3):775–778. doi: 10.1042/bj2030775

A circular-dichroism study of epidermolytic toxins A and B from Staphylococcus aureus.

C J Bailey, S R Martin, P M Bayley
PMCID: PMC1158295  PMID: 7115314

Abstract

The far-u.v. circular-dichroism spectra of the two epidermolytic toxins was analysed into fractional contributions of 0.09 helix and 0.46 beta-sheet to each toxin structure. Trifluoroethanol perturbation caused an initial increase in dichroic absorption at 205 nm and then a change characterized as a beta-sheet-to-alpha-helix transition. The intense near-u.v. spectra suggested that the toxins have unusually rigid, though different, aromatic-side-chain arrangements.

Full text

PDF
778

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arbuthnott J. P., Billcliffe B. Qualitative and quantitative methods for detecting staphylococcal epidermolytic toxin. J Med Microbiol. 1976 May;9(2):191–201. doi: 10.1099/00222615-9-2-191. [DOI] [PubMed] [Google Scholar]
  2. Bailey C. J., de Azavedo J., Arbuthnott J. P. A comparative study of two serotypes of epidermolytic toxin from Staphylococcus aureus. Biochim Biophys Acta. 1980 Jul 24;624(1):111–120. doi: 10.1016/0005-2795(80)90230-5. [DOI] [PubMed] [Google Scholar]
  3. Baker D. H., Dimond R. L., Wuepper K. D. The epidermolytic toxin of Staphylococcus aureus: its failure to bind to cells and its detection in blister fluids of patients with bullous impetigo. J Invest Dermatol. 1978 Oct;71(4):274–275. doi: 10.1111/1523-1747.ep12515105. [DOI] [PubMed] [Google Scholar]
  4. Grinvald A., Schlessinger J., Pecht I., Steinberg I. Z. Homogeneity and variability in the structure of azurin molecules studied by fluorescence decay and circular polarization. Biochemistry. 1975 May 6;14(9):1921–1929. doi: 10.1021/bi00680a018. [DOI] [PubMed] [Google Scholar]
  5. Horwitz J., Strickland E. H., Billups C. Analysis of the vibrational structure in the near-ultraviolet circular dichroism and absorption spectra of tyrosine derivatives and ribonuclease-A at 77 degrees K. J Am Chem Soc. 1970 Apr 8;92(7):2119–2129. doi: 10.1021/ja00710a054. [DOI] [PubMed] [Google Scholar]
  6. Hugli T. E., Moore S. Determination of the tryptophan content of proteins by ion exchange chromatography of alkaline hydrolysates. J Biol Chem. 1972 May 10;247(9):2828–2834. [PubMed] [Google Scholar]
  7. Johnson A. D., Metzger J. F., Spero L. Production, purification, and chemical characterization of Staphylococcus aureus exfoliative toxin. Infect Immun. 1975 Nov;12(5):1206–1210. doi: 10.1128/iai.12.5.1206-1210.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Johnson A. D., Spero L., Cades J. S., de Cicco B. T. Purification and characterization of different types of exfoliative toxin from Staphylococcus aureus. Infect Immun. 1979 Jun;24(3):679–684. doi: 10.1128/iai.24.3.679-684.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kapral F. A., Miller M. M. Product of Staphylococcus aureus responsible for the scalded-skin syndrome. Infect Immun. 1971 Nov;4(5):541–545. doi: 10.1128/iai.4.5.541-545.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kondo I., Sakurai S., Sarai Y. Purification of exfoliatin produced by Staphylococcus aureus of bacteriophage group 2 and its physicochemical properties. Infect Immun. 1973 Aug;8(2):156–164. doi: 10.1128/iai.8.2.156-164.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Liu T. Y., Chang Y. H. Hydrolysis of proteins with p-toluenesulfonic acid. Determination of tryptophan. J Biol Chem. 1971 May 10;246(9):2842–2848. [PubMed] [Google Scholar]
  12. Nishioka K., Katayama I., Sano S. Possible binding of epidermolytic toxin to a subcellular fraction of the epidermis. J Dermatol. 1981 Feb;8(1):7–12. doi: 10.1111/j.1346-8138.1981.tb02005.x. [DOI] [PubMed] [Google Scholar]
  13. Provencher S. W., Glöckner J. Estimation of globular protein secondary structure from circular dichroism. Biochemistry. 1981 Jan 6;20(1):33–37. doi: 10.1021/bi00504a006. [DOI] [PubMed] [Google Scholar]
  14. Rogolsky M., Wiley B. B., Glasgow L. A. Phage group II staphylococcal strains with chromosomal and extrachromosomal genes for exfoliative toxin production. Infect Immun. 1976 Jan;13(1):44–52. doi: 10.1128/iai.13.1.44-52.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Strickland E. H. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem. 1974 Jan;2(1):113–175. doi: 10.3109/10409237409105445. [DOI] [PubMed] [Google Scholar]
  16. Strickland E. H., Horwitz J., Billups C. Fine structure in the near-ultraviolet circular dichroism and absorption spectra of tryptophan derivatives and chymotrypsinogen A at 77 degrees K. Biochemistry. 1969 Aug;8(8):3205–3213. doi: 10.1021/bi00836a012. [DOI] [PubMed] [Google Scholar]
  17. Wiley B. B., Rogolsky M. Molecular and serological differentiation of staphylococcal exfoliative toxin synthesized under chromosomal and plasmid control. Infect Immun. 1977 Nov;18(2):487–494. doi: 10.1128/iai.18.2.487-494.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES