Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 May 15;204(2):605–608. doi: 10.1042/bj2040605

Immunological and kinetic properties of pyruvate kinase in rat pancreatic islets

Tracey A Chatterton *, C Hugh Reynolds †,, Norman R Lazarus †,, Christopher I Pogson *
PMCID: PMC1158390  PMID: 7052071

Abstract

Pyruvate kinase in rat pancreatic islets was characterized immunologically and kinetically. It is concluded that this activity is predominantly if not totally of the M2 type.

Full text

PDF
607

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Randle P. J. Enzymes of glucose metabolism in normal mouse pancreatic islets. Biochem J. 1970 Aug;119(1):5–15. doi: 10.1042/bj1190005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berglund L., Humble E. Kinetic properties of pig pyruvate kinases type A from kidney and type M from muscle. Arch Biochem Biophys. 1979 Jul;195(2):347–361. doi: 10.1016/0003-9861(79)90360-6. [DOI] [PubMed] [Google Scholar]
  3. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  4. Capito K., Hedeskov C. J. Effects of glucose, glucose metabolites and calcium ions on adenylate cyclase activity in homogenates of mouse pancreatic islets. Biochem J. 1977 Mar 15;162(3):569–573. doi: 10.1042/bj1620569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carbonell J., Felíu J. E., Marco R., Sols A. Pyruvate kinase. Classes of regulatory isoenzymes in mammalian tissues. Eur J Biochem. 1973 Aug 1;37(1):148–156. doi: 10.1111/j.1432-1033.1973.tb02969.x. [DOI] [PubMed] [Google Scholar]
  6. DPAVIS B., Lazarus N. R. Regulation of 3',5'-cyclic AMP-dependent protein kinase in the plasma membrane of cod (Gadus callarius) and mouse islets. J Membr Biol. 1975;20(3-4):301–318. doi: 10.1007/BF01870640. [DOI] [PubMed] [Google Scholar]
  7. Davis B., Lazarus N. R. An in Vitro system for studying insulin release caused by secretory granules-plasma membrane interaction: definition of the system. J Physiol. 1976 Apr;256(3):709–729. doi: 10.1113/jphysiol.1976.sp011347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eigenbrodt E., Schoner W. Purification and properties of the pyruvate kinase isoenzymes type L and M2 from chicken liver. Hoppe Seylers Z Physiol Chem. 1977 Aug;358(8):1033–1046. doi: 10.1515/bchm2.1977.358.2.1033. [DOI] [PubMed] [Google Scholar]
  9. Greenbaum A. L., Gumaa K. A., McLean P. The distribution of hepatic metabolites and the control of the pathways of carbohydrate metabolism in animals of different dietary and hormonal status. Arch Biochem Biophys. 1971 Apr;143(2):617–663. doi: 10.1016/0003-9861(71)90247-5. [DOI] [PubMed] [Google Scholar]
  10. Hall E. R., Cottam G. L. Isozymes of pyruvate kinase in vertebrates: their physical, chemical, kinetic and immunological properties. Int J Biochem. 1978;9(11):785–793. doi: 10.1016/0020-711x(78)90027-7. [DOI] [PubMed] [Google Scholar]
  11. Hedeskov C. J., Capito K. Pancreatic islet metabolism of pyruvate and other potentiators of insulin release. Effects of starvation. Horm Metab Res Suppl. 1980;Suppl 10:8–13. [PubMed] [Google Scholar]
  12. Hopkirk T. J., Bloxham D. P. Studies on the biosynthesis of hepatic pyruvate kinase and its correlation with enhanced hepatic lipogenesis in meal-trained rats. Biochem J. 1979 Aug 15;182(2):383–397. doi: 10.1042/bj1820383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishikawa E. The regulation of uptake and output of amino acids by rat tissues. Adv Enzyme Regul. 1976;14:117–136. doi: 10.1016/0065-2571(76)90010-8. [DOI] [PubMed] [Google Scholar]
  14. Jiménez de Asúa L., Rozengurt E., Devalle J. J., Carminatti H. Some kinetic differences between the M isoenzymes of pyruvate kinase from liver and muscle. Biochim Biophys Acta. 1971 May 12;235(2):326–334. doi: 10.1016/0005-2744(71)90211-7. [DOI] [PubMed] [Google Scholar]
  15. Lacy P. E., Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967 Jan;16(1):35–39. doi: 10.2337/diab.16.1.35. [DOI] [PubMed] [Google Scholar]
  16. Sener A., Kawazu S., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Metabolism of glucose in K+-deprived islets. Biochem J. 1980 Jan 15;186(1):183–190. doi: 10.1042/bj1860183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sugden M. C., Ashcroft S. J. Effects of phosphoenolpyruvate, other glycolytic intermediates and methylxanthines on calcium uptake by a mitochondrial fraction from rat pancreatic islets. Diabetologia. 1978 Sep;15(3):173–180. doi: 10.1007/BF00421235. [DOI] [PubMed] [Google Scholar]
  18. Sugden M. C., Ashcroft S. J. Phosphoenolpyruvate in rat pancreatic islets: a possible intracellular trigger of insulin release? Diabetologia. 1977 Sep;13(5):481–486. doi: 10.1007/BF01234500. [DOI] [PubMed] [Google Scholar]
  19. Tanaka T., Harano Y., Sue F., Morimura H. Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J Biochem. 1967 Jul;62(1):71–91. doi: 10.1093/oxfordjournals.jbchem.a128639. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES