Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Jun 15;204(3):635–638. doi: 10.1042/bj2040635

Hydrolysis of nicotinamide-adenine dinucleotide by purified renal brush-border membranes. Mechanism of NAD+ inhibition of brush-border membrane phosphate-transport activity.

H S Tenenhouse, Y L Chu
PMCID: PMC1158401  PMID: 6812564

Abstract

Purified rat renal brush-border membrane vesicles possess a heat-labile enzyme activity which hydrolyses NAD+. A reciprocal relationship exists between the disappearance of NAD+ and the appearance of adenosine; 2 mol of Pi are liberated from each mol of NAD+ incubated with brush-border membrane vesicles. Freezing and thawing brush-border membrane vesicles does not enhance the initial rate of NAD+ hydrolysis. Preincubation of brush-border membrane vesicles with NAD+ results in inhibition of Na+-dependent Pi-transport activity, whereas Na+-dependent glucose transport is not affected. EDTA, which prevents the release of Pi from NAD+ and which itself has no direct effect on brush-border membrane Pi transport, reverses the NAD+ inhibition of Na+-dependent Pi transport. These results suggest that it is the Pi liberated from NAD+ and not NAD+ itself that inhibits Na+-dependent Pi transport.

Full text

PDF
637

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berndt T. J., Knox F. G., Kempson S. A., Dousa T. P. Nicotinamide adenine dinucleotide and renal response to parathyroid hormone. Endocrinology. 1981 May;108(5):2005–2007. doi: 10.1210/endo-108-5-2005. [DOI] [PubMed] [Google Scholar]
  2. Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dennis V. W., Stead W. W., Myers J. L. Renal handling of phosphate and calcium. Annu Rev Physiol. 1979;41:257–271. doi: 10.1146/annurev.ph.41.030179.001353. [DOI] [PubMed] [Google Scholar]
  4. Filburn C. R., Sacktor B. Cyclic nucleotide phosphodiesterases of rabbit renal cortex. Characterization of brush border membrane activities. Arch Biochem Biophys. 1976 May;174(1):249–261. doi: 10.1016/0003-9861(76)90344-1. [DOI] [PubMed] [Google Scholar]
  5. Haase W., Schäfer A., Murer H., Kinne R. Studies on the orientation of brush-border membrane vesicles. Biochem J. 1978 Apr 15;172(1):57–62. doi: 10.1042/bj1720057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kempson S. A., Colon-Otero G., Ou S. Y., Turner S. T., Dousa T. P. Possible role of nicotinamide adenine dinucleotide as an intracellular regulator of renal transport of phosphate in the rat. J Clin Invest. 1981 May;67(5):1347–1360. doi: 10.1172/JCI110163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knox F. G., Schneider E. G., Willis L. R., Strandhoy J. W., Ott C. E. Editorial: Site and control of phosphate reabsorption by the kidney. Kidney Int. 1973 Jun;3(6):347–353. doi: 10.1038/ki.1973.56. [DOI] [PubMed] [Google Scholar]
  8. Tenenhouse H. S., Scriver C. R. Orthophosphate transport in the erythrocyte of normal subjects and of patients with X-linked hypophosphatemia. J Clin Invest. 1975 Mar;55(3):644–654. doi: 10.1172/JCI107972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Tenenhouse H. S., Scriver C. R. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphatemia (Hyp mouse model). Can J Biochem. 1978 Jun;56(6):640–646. doi: 10.1139/o78-096. [DOI] [PubMed] [Google Scholar]
  10. Tenenhouse H. S., Scriver C. R., Vizel E. J. Alkaline phosphatase activity does not mediate phosphate transport in the renal-cortical brush-border membrane. Biochem J. 1980 Aug 15;190(2):473–476. doi: 10.1042/bj1900473. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES