Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Aug 1;205(2):361–372. doi: 10.1042/bj2050361

Formation of complement subcomponent C1q-immunoglobulin G complex. Thermodynamic and chemical-modification studies.

E J Emanuel, A D Brampton, D R Burton, R A Dwek
PMCID: PMC1158489  PMID: 6982707

Abstract

The interaction between the complement subcomponent C1q and immunoglobulin G was investigated under a variety of experimental conditions. Formation of the subcomponent C1q--immunoglobulin G complex was shown to be an equilibrium process. Thermodynamic studies of the effect of varying the ionic strength indicate that over the salt range 0.15--0.225 M-NaCl the binding of subcomponent C1q to immunoglobulin aggregates releases 9--12 salt ions (Na+ and/or Cl-), illustrating the importance of ionic interactions for the formation of the complex. The effects of small peptide and organic ion inhibitors support this conclusion. Chemical modifications of carboxylate residues on immunoglobulin G by glycine ethyl ester/water-soluble carbodi-imide (up to 12 residues modified per whole molecule of immunoglobulin G) and of lysine residues by acetic anhydride (3 residues per whole molecule of immunoglobulin G) or methyl acetimidate (19 residues per whole molecule of immunoglobulin G) lowered the binding affinity of immunoglobulin for subcomponent C1q. Modification of arginine residues by cyclohexane-1,2-dione-1,2 (14 residues per whole molecule of immunoglobulin G) and of tryptophan by hydroxynitrobenzyl bromide (2 residues per whole molecule of immunoglobulin G), however, had little or no effect. The results are consistent with the proposal that the subcomponent-C1q-binding site on immunoglobulin G is to be found on the last two beta-strands of the Cv2 domain [Burton, Boyd, Brampton, Easterbrook-Smith, Emanuel, Novotny, Rademacher, van Schravendijk, Sternberg & Dwek (1980) Nature (London) 288, 338--344].

Full text

PDF
363

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allan R., Isliker H. Studies on the complement-binding site of rabbit immunoglobulin G-11. The reaction of rabbit IgG and its fragments with Clq. Immunochemistry. 1974 May;11(5):243–248. doi: 10.1016/0019-2791(74)90202-x. [DOI] [PubMed] [Google Scholar]
  2. Allan R., Isliker H. Studies on the complement-binding site of rabbit immunoglobulin G. I. Modification of tryptophan residues and their role in anticomplementary activity of rabbit IgG. Immunochemistry. 1974 Apr;11(4):175–180. doi: 10.1016/0019-2791(74)90325-5. [DOI] [PubMed] [Google Scholar]
  3. Beale D., Feinstein A. Structure and function of the constant regions of immunoglobulins. Q Rev Biophys. 1976 May;9(2):135–180. doi: 10.1017/s0033583500002390. [DOI] [PubMed] [Google Scholar]
  4. Boackle R. J., Johnson B. J., Caughman G. B. An IgG primary sequence exposure theory for complement activation using synthetic peptides. Nature. 1979 Dec 13;282(5740):742–743. doi: 10.1038/282742a0. [DOI] [PubMed] [Google Scholar]
  5. Brunhouse R., Cebra J. J. Isotypes of IgG: comparison of the primary structures of three pairs of isotypes which differ in their ability to activate complement. Mol Immunol. 1979 Nov;16(11):907–917. doi: 10.1016/0161-5890(79)90089-0. [DOI] [PubMed] [Google Scholar]
  6. Burton D. R., Boyd J., Brampton A. D., Easterbrook-Smith S. B., Emanuel E. J., Novotny J., Rademacher T. W., van Schravendijk M. R., Sternberg M. J., Dwek R. A. The Clq receptor site on immunoglobulin G. Nature. 1980 Nov 27;288(5789):338–344. doi: 10.1038/288338a0. [DOI] [PubMed] [Google Scholar]
  7. Clark D. C., Martin S. R., Bayley P. M. Conformation and assembly characteristics of tubulin and microtubule protein from bovine brain. Biochemistry. 1981 Mar 31;20(7):1924–1932. doi: 10.1021/bi00510a031. [DOI] [PubMed] [Google Scholar]
  8. Colomb M., Porter R. R. Characterization of a plasmin-digest fragment of rabbit immunoglobulin gamma that binds antigen and complement. Biochem J. 1975 Feb;145(2):177–183. doi: 10.1042/bj1450177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dorrington K. J., Smith B. R. Conformational changes accompanying the dissociation and association of immunoglobulin-G subunits. Biochim Biophys Acta. 1972 Mar 15;263(1):70–81. doi: 10.1016/0005-2795(72)90160-2. [DOI] [PubMed] [Google Scholar]
  10. Dorrington K. J. The structural basis for the functional versatility of immunoglobulin G1. Can J Biochem. 1978 Dec;56(12):1087–1101. doi: 10.1139/o78-172. [DOI] [PubMed] [Google Scholar]
  11. Dower S. K., Dwek R. A., McLaughlin A. C., Mole L. E., Press E. M., Sunderland C. A. The binding of lanthanides to non-immune rabbit immunoglobulin G and its fragments. Biochem J. 1975 Jul;149(1):73–82. doi: 10.1042/bj1490073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duggleby R. G. A nonlinear regression program for small computers. Anal Biochem. 1981 Jan 1;110(1):9–18. doi: 10.1016/0003-2697(81)90104-4. [DOI] [PubMed] [Google Scholar]
  13. FLEISCHMAN J. B., PORTER R. R., PRESS E. M. THE ARRANGEMENT OF THE PEPTIDE CHAINS IN GAMMA-GLOBULIN. Biochem J. 1963 Aug;88:220–228. doi: 10.1042/bj0880220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fanger M. W., Smyth D. G. The oligosaccharide units of rabbit immunoglobulin G. Multiple carbohydrate attachment sites. Biochem J. 1972 May;127(5):757–765. doi: 10.1042/bj1270757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Folkerd E. J., Gardner B., Hughes-Jones N. C. The relationship between the binding ability and the rate of activation of the complement component C1. Immunology. 1980 Sep;41(1):179–185. [PMC free article] [PubMed] [Google Scholar]
  16. Griffin D., Tachibana D. K., Nelson B., Rosenberg L. T. Contribution of tryptophan to the biologic properties of anti-dinitrophenyl antibody. Immunochemistry. 1967 Jan;4(1):23–30. doi: 10.1016/0019-2791(67)90193-0. [DOI] [PubMed] [Google Scholar]
  17. Heusser C., Boesman M., Nordin J. H., Isliker H. Effect of chemical and enzymatic radioiodination on in vitro human Clq activities. J Immunol. 1973 Mar;110(3):820–828. [PubMed] [Google Scholar]
  18. Huber R., Deisenhofer J., Colman P. M., Matsushima M., Palm W. Crystallographic structure studies of an IgG molecule and an Fc fragment. Nature. 1976 Dec 2;264(5585):415–420. doi: 10.1038/264415a0. [DOI] [PubMed] [Google Scholar]
  19. Hughes-Jones N. C., Gardner B. The reaction between the complement subcomponent C1q, IgG complexes and polyionic molecules. Immunology. 1978 Mar;34(3):459–463. [PMC free article] [PubMed] [Google Scholar]
  20. Isenman D. E., Ellerson J. R., Painter R. H., Dorrington K. J. Correlation between the exposure of aromatic chromophores at the surface of the Fc domains of immunoglobulin G and their ability to bind complement. Biochemistry. 1977 Jan 25;16(2):233–240. doi: 10.1021/bi00621a012. [DOI] [PubMed] [Google Scholar]
  21. Johnson B. J., Thames K. E. Investigations of the complement-fixing sites of immunoglobulins. J Immunol. 1976 Nov;117(5 Pt 1):1491–1494. [PubMed] [Google Scholar]
  22. Kehoe J. M., Fougereau M. Immunoglobulin peptide with complement fixing activity. Nature. 1969 Dec 20;224(5225):1212–1213. doi: 10.1038/2241212a0. [DOI] [PubMed] [Google Scholar]
  23. Lee J. P., Painter R. H. Complement binding properties of two peptides from the C gamma 2 region of human IgG1. Mol Immunol. 1980 Sep;17(9):1155–1162. doi: 10.1016/0161-5890(80)90111-x. [DOI] [PubMed] [Google Scholar]
  24. Lin T. Y., Fletcher D. S. Interaction of human Clq with insoluble immunoglobulin aggregates. Immunochemistry. 1978 Feb;15(2):107–117. doi: 10.1016/0161-5890(78)90050-0. [DOI] [PubMed] [Google Scholar]
  25. Patthy L., Smith E. L. Identification of functional arginine residues in ribonuclease A and lysozyme. J Biol Chem. 1975 Jan 25;250(2):565–569. [PubMed] [Google Scholar]
  26. Patthy L., Smith E. L. Reversible modification of arginine residues. Application to sequence studies by restriction of tryptic hydrolysis to lysine residues. J Biol Chem. 1975 Jan 25;250(2):557–564. [PubMed] [Google Scholar]
  27. Record M. T., Jr, Anderson C. F., Lohman T. M. Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: the roles of ion association or release, screening, and ion effects on water activity. Q Rev Biophys. 1978 May;11(2):103–178. doi: 10.1017/s003358350000202x. [DOI] [PubMed] [Google Scholar]
  28. Reid K. B. A collagen-like amino acid sequence in a polypeptide chain of human C1q (a subcomponent of the first component of complement). Biochem J. 1974 Jul;141(1):189–203. doi: 10.1042/bj1410189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Reid K. B., Porter R. R. Subunit composition and structure of subcomponent C1q of the first component of human complement. Biochem J. 1976 Apr 1;155(1):19–23. doi: 10.1042/bj1550019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rodwell J. D., Lih-Heng-Tang, Schumaker V. N. Antigen valence and Fc-localized secondary forces in antibody precipitation. Mol Immunol. 1980 Dec;17(12):1591–1597. doi: 10.1016/0161-5890(80)90185-6. [DOI] [PubMed] [Google Scholar]
  31. SMILEY J. D., HORTON H. ISOLATION AND STUDY OF THE FUNCTION OF HUMAN GAMMA-2-GLOBULIN GLYCOPEPTIDE. Immunochemistry. 1965 Mar;47:61–66. [PubMed] [Google Scholar]
  32. Sledge C. R., Bing D. H. Binding properties of the human complement protein Clq. J Biol Chem. 1973 Apr 25;248(8):2818–2823. [PubMed] [Google Scholar]
  33. Stewart G. A., Johnson P. M., Barrett M. W., Scopes P. M., Stanworth D. R. Circular dichroism studies on proteolytic cleavage fragments from rabbit IgG. Immunochemistry. 1977 Apr;14(4):263–268. doi: 10.1016/0019-2791(77)90248-8. [DOI] [PubMed] [Google Scholar]
  34. Vivanco-Martínez F., Bragado R., Albar J. P., Juarez C., Ortíz-Masllorens F. Chemical modification of carboxyl groups in human Fc gamma fragments: structural role and effect on the complement fixation. Mol Immunol. 1980 Mar;17(3):327–336. doi: 10.1016/0161-5890(80)90053-x. [DOI] [PubMed] [Google Scholar]
  35. Waldesbuhl M., Allan R., Meylan A., Isliker H. Anticomplementary activity of gamma G-immunoglobulins and of their subunits. Immunochemistry. 1970 Feb;7(2):185–197. doi: 10.1016/0019-2791(70)90154-0. [DOI] [PubMed] [Google Scholar]
  36. Williams D. M., Remington J. S. Effect of human monocytes and macrophages on Trypanosoma cruzi. Immunology. 1977 Jan;32(1):19–23. [PMC free article] [PubMed] [Google Scholar]
  37. Winkelhake J. L., Kunicki T. J., Elcombe B. M., Aster R. H. Effects of pH treatments and deglycosylation of rabbit immunoglobulin G on the binding of C1q. J Biol Chem. 1980 Apr 10;255(7):2822–2828. [PubMed] [Google Scholar]
  38. Wright J. K., Tschopp J., Jaton J. C., Engel J. Dimeric, trimeric and tetrameric complexes of immunoglobulin G fix complement. Biochem J. 1980 Jun 1;187(3):775–780. doi: 10.1042/bj1870775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Schravendijk M. R., Dwek R. A. The use of protein A and concanavalin A to examine the possible role of the carbohydrate of IgG in the binding of Clq. Mol Immunol. 1981 Dec;18(12):1079–1085. doi: 10.1016/0161-5890(81)90023-7. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES