Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1982 Sep 1;205(3):559–566. doi: 10.1042/bj2050559

Carbonic anhydrase C in white-skeletal-muscle tissue.

W Siffert, G Gros
PMCID: PMC1158521  PMID: 6816217

Abstract

We investigated the activity of carbonic anhydrase in blood-free perfused white skeletal muscles of the rabbit. Carbonic anhydrase activities were measured in supernatants and in Triton extracts of the particulate fractions of white-skeletal-muscle homogenate by using a rapid-reaction stopped-flow apparatus equipped with a pH electrode. An average carbonic anhydrase concentration of about 0.5 microM was determined for white skeletal muscle. This concentration is about 1% of that inside the erythrocyte. Some 85% of the muscle enzyme was found in the homogenate supernatant, and only 15% appeared to be associated with membranes and organelles. White-skeletal-muscle carbonic anhydrase was characterized in terms of its Michaelis constant and catalytic-centre activity (turnover number) for CO2 and its inhibition constant towards ethoxzolamide. These properties were identical with those of the rabbit erythrocyte carbonic anhydrase C, suggesting that a type-C enzyme is present in white skeletal muscle. Affinity chromatography of muscle supernatant and of lysed erythrocytes showed that, whereas rabbit erythrocytes contain about equal amounts of carbonic anhydrase isoenzymes B and C, the B isoenzyme is practically absent from white skeletal muscle. Similarly, ethoxzolamide-inhibition curves suggested that white skeletal muscle contains no carbonic anhydrase A. It is concluded that white skeletal muscle contains essentially one carbonic anhydrase isoenzyme, the C form, most of which is probably of cytosolic origin.

Full text

PDF
562

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carter N., Shiels A., Tashian R. Carbonic anhydrase III isoenzyme from human and bovine muscle [proceedings]. Biochem Soc Trans. 1978;6(3):552–553. doi: 10.1042/bst0060552. [DOI] [PubMed] [Google Scholar]
  2. Crandall E. D., Klocke R. A., Forster R. E. Hydroxyl ion movements across the human erythrocyte membrane. Measurement of rapid pH changes in red cell suspensions. J Gen Physiol. 1971 Jun;57(6):664–683. doi: 10.1085/jgp.57.6.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dodgson S. J., Forster R. E., 2nd, Storey B. T., Mela L. Mitochondrial carbonic anhydrase. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5562–5566. doi: 10.1073/pnas.77.9.5562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Effros R. M., Weissman M. L. Carbonic anhydrase activity of the cat hind leg. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):1090–1098. doi: 10.1152/jappl.1979.47.5.1090. [DOI] [PubMed] [Google Scholar]
  5. GRAY S. J., STERLING K. The tagging of red cells and plasma proteins with radioactive chromium. J Clin Invest. 1950 Dec;29(12):1604–1613. doi: 10.1172/JCI102403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gros G., Forster R. E., Lin L. The carbamate reaction of glycylglycine, plasma, and tissue extracts evaluated by a pH stopped flow apparatus. J Biol Chem. 1976 Jul 25;251(14):4398–4407. [PubMed] [Google Scholar]
  7. HODGE H. C. Training of toxicologists. Fed Proc. 1960 Sep;19(Suppl 4):50–52. [PubMed] [Google Scholar]
  8. Kawashiro T., Scheid P. Measurement of Krogh's diffusion constant of CO2 in respiring muscle at various CO2 levels: evidence for facilitated diffusion. Pflugers Arch. 1976 Mar 30;362(2):127–133. doi: 10.1007/BF00583638. [DOI] [PubMed] [Google Scholar]
  9. Kernohan J. C. A method for studying the kinetics of the inhibition of carbonic anhydrase by sulphonamides. Biochim Biophys Acta. 1966 May 5;118(2):405–412. doi: 10.1016/s0926-6593(66)80049-8. [DOI] [PubMed] [Google Scholar]
  10. Koester M. K., Register A. M., Noltmann E. A. Basic muscle protein, a third genetic locus isoenzyme of carbonic anhydrase? Biochem Biophys Res Commun. 1977 May 9;76(1):196–204. doi: 10.1016/0006-291x(77)91686-2. [DOI] [PubMed] [Google Scholar]
  11. MAREN T. H., PARCELL A. L., MALIK M. N. A kinetic analysis of carbonic anhydrase inhibition. J Pharmacol Exp Ther. 1960 Dec;130:389–400. [PubMed] [Google Scholar]
  12. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  13. Maren T. H., Rayburn C. S., Liddell N. E. Inhibition by anions of human red cell carbonic anhydrase B: physiological and biochemical implications. Science. 1976 Feb 6;191(4226):469–472. doi: 10.1126/science.813299. [DOI] [PubMed] [Google Scholar]
  14. Maren T. H., Wiley C. E. The in vitro activity of sulfonamides against red cell carbonic anhydrases. Effect of ionic and substrate variation on the hydration reaction. J Med Chem. 1968 Mar;11(2):228–232. doi: 10.1021/jm00308a008. [DOI] [PubMed] [Google Scholar]
  15. McIntosh J. E. Carbonic anhydrase isoenzymes in the erythrocytes and uterus of the rabbit. Biochem J. 1970 Nov;120(2):299–310. doi: 10.1042/bj1200299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Muther T. F. On the lack of specificity of the cobalt-bicarbonate method for carbonic anhydrase. J Histochem Cytochem. 1977 Sep;25(9):1043–1050. doi: 10.1177/25.9.71324. [DOI] [PubMed] [Google Scholar]
  17. Ridderstråle Y. Observations on the localization of carbonic anhydrase in muscle. Acta Physiol Scand. 1979 Jun;106(2):239–240. doi: 10.1111/j.1748-1716.1979.tb06393.x. [DOI] [PubMed] [Google Scholar]
  18. Sanyal G., Maren T. H. Thermodynamics of carbonic anhydrase catalysis. A comparison between human isoenzymes B and C. J Biol Chem. 1981 Jan 25;256(2):608–612. [PubMed] [Google Scholar]
  19. Zborowska-Sluis D. T., L'Abbate A., Klassen G. A. Evidence of carbonic anhydrase activity in skeletal muscle: a role for facilitative carbon dioxide transport. Respir Physiol. 1974 Sep;21(3):341–350. doi: 10.1016/0034-5687(74)90064-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES