Abstract
1. The Na(+)-K+ pump current (Ip) was studied in sino-atrial (SA) node cells of rabbits using the whole-cell patch-clamp technique. 2. With 50 mM Na+ in the pipette solution ([Na+]pip), changing the external K+ concentration (-K+-o) from 0 to 5.4 mM caused the holding current to shift in an outward direction and reach a new steady state. The current-voltage relationships obtained by subtraction of current traces recorded at 0 mM Ko+ from those recorded at 5.4 mM Ko+ revealed time-independent and voltage-dependent characteristics. The external K(+)-induced current was completely blocked by external application of 10 microM ouabain, indicating the existence of Ip in SA node cells of rabbit heart. 3. Ip increased as [K+]o increased. With 30 mM Na+pip, Ip at 0 mV was activated by [K+]o with non-linear least-squares fit parameters for the Hill equation of K0.5 of 1.4 mM and a Hill coefficient (nH) of 1.2 (n = 7). 4. The cation dependence of the K+ site of the Na(+)-K+ pump was examined using various monovalent cations. The sequence was K+ > or = Rb+ > Cs+ > > > Li+. 5. Ip at 0 mV also increased as [Na+]pip was increased from 10 to 150 mM at 5.4 mM Ko+, with a K0.5 value of 14 mM and a nH of 1.3 (n = 54). 6. Ip at 0 mV was reduced by lowering the temperature from 37 to 25 degrees C with 30 mM Na+pip and 5.4 mM Ko+. The temperature coefficient (Q10) for Ip was 2.1 (n = 27). 7. With 10 mM Na+pip and 5.4 mM Ko+, the half-activation voltage of Ip was -52 +/- 16 mV and the current at this voltage was 22.5 +/- 3.5 pA (n = 10), indicating that Ip contributes significantly to the background outward current during the normal pacemaker potential of SA node cells.
Full text
PDF![51](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/a40162422f2c/jphysiol00300-0052.png)
![52](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/d1353ba6aad8/jphysiol00300-0053.png)
![53](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/e23118ca92fe/jphysiol00300-0054.png)
![54](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/d503a9ba24bd/jphysiol00300-0055.png)
![55](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/54c5a8b489e7/jphysiol00300-0056.png)
![56](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/921b16348af3/jphysiol00300-0057.png)
![57](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/436363800896/jphysiol00300-0058.png)
![58](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/30f8f00d8717/jphysiol00300-0059.png)
![59](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/09361429ed09/jphysiol00300-0060.png)
![60](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/bf85ec0db172/jphysiol00300-0061.png)
![61](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/5fc299c522e5/jphysiol00300-0062.png)
![62](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ec8/1158647/83eea5e67f67/jphysiol00300-0063.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bielen F. V., Glitsch H. G., Verdonck F. Dependence of Na+ pump current on external monovalent cations and membrane potential in rabbit cardiac Purkinje cells. J Physiol. 1991 Oct;442:169–189. doi: 10.1113/jphysiol.1991.sp018788. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Weer P., Gadsby D. C., Rakowski R. F. Voltage dependence of the Na-K pump. Annu Rev Physiol. 1988;50:225–241. doi: 10.1146/annurev.ph.50.030188.001301. [DOI] [PubMed] [Google Scholar]
- EISENMAN G. Cation selective glass electrodes and their mode of operation. Biophys J. 1962 Mar;2(2 Pt 2):259–323. doi: 10.1016/s0006-3495(62)86959-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisner D. A., Lederer W. J. The relationship between sodium pump activity and twitch tension in cardiac Purkinje fibres. J Physiol. 1980 Jun;303:475–494. doi: 10.1113/jphysiol.1980.sp013299. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisner D. A., Lederer W. J. The role of the sodium pump in the effects of potassium-depleted solutions on mammalian cardiac muscle. J Physiol. 1979 Sep;294:279–301. doi: 10.1113/jphysiol.1979.sp012930. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gadsby D. C., Kimura J., Noma A. Voltage dependence of Na/K pump current in isolated heart cells. Nature. 1985 May 2;315(6014):63–65. doi: 10.1038/315063a0. [DOI] [PubMed] [Google Scholar]
- Gadsby D. C., Nakao M. Steady-state current-voltage relationship of the Na/K pump in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):511–537. doi: 10.1085/jgp.94.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glitsch H. G., Krahn T., Pusch H. The dependence of sodium pump current on internal Na concentration and membrane potential in cardioballs from sheep Purkinje fibres. Pflugers Arch. 1989 May;414(1):52–58. doi: 10.1007/BF00585626. [DOI] [PubMed] [Google Scholar]
- Glitsch H. G., Pusch H. On the temperature dependence of the Na pump in sheep Purkinje fibres. Pflugers Arch. 1984 Sep;402(1):109–115. doi: 10.1007/BF00584839. [DOI] [PubMed] [Google Scholar]
- Hagiwara N., Irisawa H., Kameyama M. Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells. J Physiol. 1988 Jan;395:233–253. doi: 10.1113/jphysiol.1988.sp016916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara N., Irisawa H., Kasanuki H., Hosoda S. Background current in sino-atrial node cells of the rabbit heart. J Physiol. 1992 Mar;448:53–72. doi: 10.1113/jphysiol.1992.sp019029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Hasuo H., Koketsu K. Potential dependency of the electrogenic Na+-pump current in bullfrog atrial muscles. Jpn J Physiol. 1985;35(1):89–100. doi: 10.2170/jjphysiol.35.89. [DOI] [PubMed] [Google Scholar]
- Irisawa H., Brown H. F., Giles W. Cardiac pacemaking in the sinoatrial node. Physiol Rev. 1993 Jan;73(1):197–227. doi: 10.1152/physrev.1993.73.1.197. [DOI] [PubMed] [Google Scholar]
- Isenberg G., Klockner U. Calcium tolerant ventricular myocytes prepared by preincubation in a "KB medium". Pflugers Arch. 1982 Oct;395(1):6–18. doi: 10.1007/BF00584963. [DOI] [PubMed] [Google Scholar]
- JOHANSEN K. REGIONAL DISTRIBUTION OF CIRCULATING BLOOD DURING SUBMERSION ASPHYXIA IN THE DUCK. Acta Physiol Scand. 1964 Sep-Oct;62:1–9. doi: 10.1111/j.1748-1716.1964.tb03945.x. [DOI] [PubMed] [Google Scholar]
- Kinard T. A., Liu X. Y., Liu S., Stimers J. R. Effect of Napip on K0 activation of the Na-K pump in adult rat cardiac myocytes. Am J Physiol. 1994 Jan;266(1 Pt 1):C37–C41. doi: 10.1152/ajpcell.1994.266.1.C37. [DOI] [PubMed] [Google Scholar]
- Kurachi Y., Noma A., Irisawa H. Electrogenic sodium pump in rabbit atrio-ventricular node cell. Pflugers Arch. 1981 Oct;391(4):261–266. doi: 10.1007/BF00581504. [DOI] [PubMed] [Google Scholar]
- Lee C. O., Fozzard H. A. Activities of potassium and sodium ions in rabbit heart muscle. J Gen Physiol. 1975 Jun;65(6):695–708. doi: 10.1085/jgp.65.6.695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nakao M., Gadsby D. C. Voltage dependence of Na translocation by the Na/K pump. Nature. 1986 Oct 16;323(6089):628–630. doi: 10.1038/323628a0. [DOI] [PubMed] [Google Scholar]
- Nakao M., Gadsby D. C. [Na] and [K] dependence of the Na/K pump current-voltage relationship in guinea pig ventricular myocytes. J Gen Physiol. 1989 Sep;94(3):539–565. doi: 10.1085/jgp.94.3.539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noma A., Irisawa H. Contribution of an electrogenic sodium pump to the membrane potential in rabbit sinoatrial node cells. Pflugers Arch. 1975 Aug 12;358(4):289–301. doi: 10.1007/BF00580527. [DOI] [PubMed] [Google Scholar]
- Noma A., Irisawa H. Electrogenic sodium pump in rabbit sinoatrial node cell. Pflugers Arch. 1974;351(2):177–182. doi: 10.1007/BF00587436. [DOI] [PubMed] [Google Scholar]
- Sejersted O. M., Wasserstrom J. A., Fozzard H. A. Na,K pump stimulation by intracellular Na in isolated, intact sheep cardiac Purkinje fibers. J Gen Physiol. 1988 Mar;91(3):445–466. doi: 10.1085/jgp.91.3.445. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheu S. S., Fozzard H. A. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol. 1982 Sep;80(3):325–351. doi: 10.1085/jgp.80.3.325. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soejima M., Noma A. Mode of regulation of the ACh-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch. 1984 Apr;400(4):424–431. doi: 10.1007/BF00587544. [DOI] [PubMed] [Google Scholar]
- Stimers J. R., Lobaugh L. A., Liu S., Shigeto N., Lieberman M. Intracellular sodium affects ouabain interaction with the Na/K pump in cultured chick cardiac myocytes. J Gen Physiol. 1990 Jan;95(1):77–95. doi: 10.1085/jgp.95.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stimers J. R., Shigeto N., Lieberman M. Na/K pump current in aggregates of cultured chick cardiac myocytes. J Gen Physiol. 1990 Jan;95(1):61–76. doi: 10.1085/jgp.95.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamagishi S., Sano T. Effect of temperature on pacemaker activity of rabbit sinus node. Am J Physiol. 1967 Apr;212(4):829–834. doi: 10.1152/ajplegacy.1967.212.4.829. [DOI] [PubMed] [Google Scholar]