Abstract
1. Hyperpolarization-activated Cl- currents (ICl,hyp) were investigated in the T84 human adenocarcinoma cell line, using the patch-clamp whole-cell configuration. 2. During whole-cell recording with high-chloride and ATP-containing internal solutions, hyperpolarizing jumps from a holding potential of 0 mV elicited slow inward current relaxations, carried by Cl- and detected at membrane potentials more negative than -40 mV. Analysis of the relative permeabilities to monovalent anions gave the following sequence: Cl- > Br- > I- > glutamate. 3. ICl,hyp was partially inhibited by 1 mM diphenylamine-2-carboxylic acid or 0.1 mM 5-nitro-2-(3-phenylpropylamino)-benzoate, and was completely blocked by Cd2+ (> 300 microM). It was insensitive to 1 mM external 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid or 1 mM Ba2+. 4. ICl,hyp was inhibited by external application of 500 microM cptcAMP (8-(4-chlorophenylthio)-adenosine 3':5'-cyclic monophosphate) or 500 nM of the protein kinase C activator, phorbol 12-myristate, 13-acetate. 5. (i) Omission of ATP from the pipette solution, (ii) ATP replacement by the non-hydrolysable ATP analogue 5'-adenylylimidodiphosphate, and (iii) inhibition of protein kinase C by staurosporine or calphostin C accelerated the activation kinetics of the current and increased its amplitude, but did not alter its pharmacological properties. 6. We conclude that hyperpolarization-activated Cl- channels similar to those of ClC-2 channels (mammalian homologue of Torpedo chloride channel ClC-0) are present in T84 cells, and that their gating properties are modulated by phosphorylation.
Full text
PDF![115](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/f24bf37ca67c/jphysiol00300-0113.png)
![116](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/f2e88dbc943f/jphysiol00300-0114.png)
![117](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/37880ed84156/jphysiol00300-0115.png)
![118](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/c32e0540b0da/jphysiol00300-0116.png)
![119](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/e7ffed498817/jphysiol00300-0117.png)
![120](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/0cedb100b943/jphysiol00300-0118.png)
![121](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/ab114698338f/jphysiol00300-0119.png)
![122](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/13e59a2f08d0/jphysiol00300-0120.png)
![123](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/bd3a25d50405/jphysiol00300-0121.png)
![124](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/b7cd94ffd2d2/jphysiol00300-0122.png)
![125](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/731bc71df3c4/jphysiol00300-0123.png)
![126](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/0bb389dbf102/jphysiol00300-0124.png)
![127](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/4405c06c2f2d/jphysiol00300-0125.png)
![128](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74e0/1158651/67d6e83fed1d/jphysiol00300-0126.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alton E. W., Manning S. D., Schlatter P. J., Geddes D. M., Williams A. J. Characterization of a Ca(2+)-dependent anion channel from sheep tracheal epithelium incorporated into planar bilayers. J Physiol. 1991 Nov;443:137–159. doi: 10.1113/jphysiol.1991.sp018827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson M. P., Welsh M. J. Calcium and cAMP activate different chloride channels in the apical membrane of normal and cystic fibrosis epithelia. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6003–6007. doi: 10.1073/pnas.88.14.6003. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Attali B., Guillemare E., Lesage F., Honoré E., Romey G., Lazdunski M., Barhanin J. The protein IsK is a dual activator of K+ and Cl- channels. Nature. 1993 Oct 28;365(6449):850–852. doi: 10.1038/365850a0. [DOI] [PubMed] [Google Scholar]
- Barrett K. E. Positive and negative regulation of chloride secretion in T84 cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C859–C868. doi: 10.1152/ajpcell.1993.265.4.C859. [DOI] [PubMed] [Google Scholar]
- Block M. L., Moody W. J. A voltage-dependent chloride current linked to the cell cycle in ascidian embryos. Science. 1990 Mar 2;247(4946):1090–1092. doi: 10.1126/science.2309122. [DOI] [PubMed] [Google Scholar]
- Chesnoy-Marchais D. Characterization of a chloride conductance activated by hyperpolarization in Aplysia neurones. J Physiol. 1983 Sep;342:277–308. doi: 10.1113/jphysiol.1983.sp014851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chesnoy-Marchais D., Fritsch J. Activation of hyperpolarization and atypical osmosensitivity of a Cl- current in rat osteoblastic cells. J Membr Biol. 1994 Jun;140(3):173–188. doi: 10.1007/BF00233706. [DOI] [PubMed] [Google Scholar]
- Cliff W. H., Frizzell R. A. Separate Cl- conductances activated by cAMP and Ca2+ in Cl(-)-secreting epithelial cells. Proc Natl Acad Sci U S A. 1990 Jul;87(13):4956–4960. doi: 10.1073/pnas.87.13.4956. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dinudom A., Young J. A., Cook D. I. Na+ and Cl- conductances are controlled by cytosolic Cl- concentration in the intralobular duct cells of mouse mandibular glands. J Membr Biol. 1993 Sep;135(3):289–295. doi: 10.1007/BF00211100. [DOI] [PubMed] [Google Scholar]
- Field M., Semrad C. E. Toxigenic diarrheas, congenital diarrheas, and cystic fibrosis: disorders of intestinal ion transport. Annu Rev Physiol. 1993;55:631–655. doi: 10.1146/annurev.ph.55.030193.003215. [DOI] [PubMed] [Google Scholar]
- Fuller C. M., Benos D. J. CFTR! Am J Physiol. 1992 Aug;263(2 Pt 1):C267–C286. doi: 10.1152/ajpcell.1992.263.2.C267. [DOI] [PubMed] [Google Scholar]
- Groschner K., Kukovetz W. R. Voltage-sensitive chloride channels of large conductance in the membrane of pig aortic endothelial cells. Pflugers Arch. 1992 Jun;421(2-3):209–217. doi: 10.1007/BF00374829. [DOI] [PubMed] [Google Scholar]
- Hockberger P., Toselli M., Swandulla D., Lux H. D. A diacylglycerol analogue reduces neuronal calcium currents independently of protein kinase C activation. Nature. 1989 Mar 23;338(6213):340–342. doi: 10.1038/338340a0. [DOI] [PubMed] [Google Scholar]
- Huflejt M. E., Blum R. A., Miller S. G., Moore H. P., Machen T. E. Regulated Cl transport, K and Cl permeability, and exocytosis in T84 cells. J Clin Invest. 1994 May;93(5):1900–1910. doi: 10.1172/JCI117181. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jentsch T. J., Steinmeyer K., Schwarz G. Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature. 1990 Dec 6;348(6301):510–514. doi: 10.1038/348510a0. [DOI] [PubMed] [Google Scholar]
- Kokubun S., Saigusa A., Tamura T. Blockade of Cl channels by organic and inorganic blockers in vascular smooth muscle cells. Pflugers Arch. 1991 Apr;418(3):204–213. doi: 10.1007/BF00370515. [DOI] [PubMed] [Google Scholar]
- Kowdley G. C., Ackerman S. J., John J. E., 3rd, Jones L. R., Moorman J. R. Hyperpolarization-activated chloride currents in Xenopus oocytes. J Gen Physiol. 1994 Feb;103(2):217–230. doi: 10.1085/jgp.103.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lindeman R. P., Chase H. S., Jr Protein kinase C does not participate in carbachol's secretory action in T84 cells. Am J Physiol. 1992 Jul;263(1 Pt 1):C140–C146. doi: 10.1152/ajpcell.1992.263.1.C140. [DOI] [PubMed] [Google Scholar]
- Lotshaw D. P., Levitan I. B. Serotonin and forskolin modulation of a chloride conductance in cultured identified Aplysia neurons. J Neurophysiol. 1987 Nov;58(5):922–939. doi: 10.1152/jn.1987.58.5.922. [DOI] [PubMed] [Google Scholar]
- Madison D. V., Malenka R. C., Nicoll R. A. Phorbol esters block a voltage-sensitive chloride current in hippocampal pyramidal cells. Nature. 1986 Jun 12;321(6071):695–697. doi: 10.1038/321695a0. [DOI] [PubMed] [Google Scholar]
- McEwan G. T., Brown C. D., Hirst B. H., Simmons N. L. Characterisation of volume-activated ion transport across epithelial monolayers of human intestinal T84 cells. Pflugers Arch. 1993 May;423(3-4):213–220. doi: 10.1007/BF00374397. [DOI] [PubMed] [Google Scholar]
- McEwan G. T., Hirst B. H., Simmons N. L. Carbachol stimulates Cl- secretion via activation of two distinct apical Cl- pathways in cultured human T84 intestinal epithelial monolayers. Biochim Biophys Acta. 1994 Feb 17;1220(3):241–247. doi: 10.1016/0167-4889(94)90144-9. [DOI] [PubMed] [Google Scholar]
- Moorman J. R., Palmer C. J., John J. E., 3rd, Durieux M. E., Jones L. R. Phospholemman expression induces a hyperpolarization-activated chloride current in Xenopus oocytes. J Biol Chem. 1992 Jul 25;267(21):14551–14554. [PubMed] [Google Scholar]
- Noulin J. F., Joffre M. Characterization and cyclic AMP-dependence of a hyperpolarization-activated chloride conductance in Leydig cells from mature rat testis. J Membr Biol. 1993 Apr;133(1):1–15. doi: 10.1007/BF00231873. [DOI] [PubMed] [Google Scholar]
- Overholt J. L., Saulino A., Drumm M. L., Harvey R. D. Rectification of whole cell cystic fibrosis transmembrane conductance regulator chloride current. Am J Physiol. 1995 Mar;268(3 Pt 1):C636–C646. doi: 10.1152/ajpcell.1995.268.3.C636. [DOI] [PubMed] [Google Scholar]
- Pahapill P. A., Schlichter L. C. Cl- channels in intact human T lymphocytes. J Membr Biol. 1992 Jan;125(2):171–183. doi: 10.1007/BF00233356. [DOI] [PubMed] [Google Scholar]
- Parker I., Miledi R. A calcium-independent chloride current activated by hyperpolarization in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1988 Mar 22;233(1271):191–199. doi: 10.1098/rspb.1988.0018. [DOI] [PubMed] [Google Scholar]
- Pusch M., Jentsch T. J. Molecular physiology of voltage-gated chloride channels. Physiol Rev. 1994 Oct;74(4):813–827. doi: 10.1152/physrev.1994.74.4.813. [DOI] [PubMed] [Google Scholar]
- Quinton P. M. Cystic fibrosis: a disease in electrolyte transport. FASEB J. 1990 Jul;4(10):2709–2717. doi: 10.1096/fasebj.4.10.2197151. [DOI] [PubMed] [Google Scholar]
- Sansom S. C., La B. Q., Carosi S. L. Double-barreled chloride channels of collecting duct basolateral membrane. Am J Physiol. 1990 Jul;259(1 Pt 2):F46–F52. doi: 10.1152/ajprenal.1990.259.1.F46. [DOI] [PubMed] [Google Scholar]
- Saxon M. L., Zhao X., Black J. D. Activation of protein kinase C isozymes is associated with post-mitotic events in intestinal epithelial cells in situ. J Cell Biol. 1994 Aug;126(3):747–763. doi: 10.1083/jcb.126.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Superdock K. R., Snyders D. K., Breyer M. D. ATP-inhibitable Cl- channel in apical membranes of cultured rabbit cortical collecting duct cells. Am J Physiol. 1993 Oct;265(4 Pt 1):C957–C965. doi: 10.1152/ajpcell.1993.265.4.C957. [DOI] [PubMed] [Google Scholar]
- Taglietti V., Tanzi F., Romero R., Simoncini L. Maturation involves suppression of voltage-gated currents in the frog oocyte. J Cell Physiol. 1984 Dec;121(3):576–588. doi: 10.1002/jcp.1041210317. [DOI] [PubMed] [Google Scholar]
- Thiemann A., Gründer S., Pusch M., Jentsch T. J. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature. 1992 Mar 5;356(6364):57–60. doi: 10.1038/356057a0. [DOI] [PubMed] [Google Scholar]
- Valverde M. A., Mintenig G. M., Sepúlveda F. V. Cl- currents of unstimulated T84 intestinal epithelial cells studied by intracellular recording. J Membr Biol. 1994 Feb;137(3):237–247. doi: 10.1007/BF00232592. [DOI] [PubMed] [Google Scholar]
- Walters R. J., Sepúlveda F. V. A basolateral K+ conductance modulated by carbachol dominates the membrane potential of small intestinal crypts. Pflugers Arch. 1991 Nov;419(5):537–539. doi: 10.1007/BF00370802. [DOI] [PubMed] [Google Scholar]