Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Jan 1;490(Pt 1):265–275. doi: 10.1113/jphysiol.1996.sp021142

Mechanism of action of ATP on canine pulmonary vagal C fibre nerve terminals.

A Pelleg 1, C M Hurt 1
PMCID: PMC1158663  PMID: 8745294

Abstract

1. The effects of extracellular adenosine 5'-triphosphate (ATP) on pulmonary vagal afferent fibres (n = 46) was studied in a canine model in vivo (n = 38). 2. ATP (3-6 mumol kg-1), administered as a rapid bolus into the right atrium, elicited a transient burst of action potentials in cervical vagal fibres, which was not affected by either blockade of ganglionic transmission (hexamethonium) or a drop in arterial blood pressure (nitroglycerine). 3. The fibres with ATP-sensitive terminals were otherwise quiescent with no activity related to either cardiac or respiratory cycles and their conduction velocity was 0.85 +/- 0.13 m s-1 (n = 7). 4. Inflation of the lungs to 2-3 times the tidal volume triggered brief bursts of action potentials in these fibres. 5. Capsaicin (10 micrograms kg-1), given as a rapid bolus into the right atrium, elicited a burst of action potentials in these ATP-sensitive fibres. 6. Smaller amounts of ATP and capsaicin (0.5-3 mumol kg-1 and 1-5 micrograms kg-1, respectively) had similar effects when the two compounds were given into the right pulmonary artery. 7. Adenosine, adenosine 5'-monophosphate, or adenosine 5'-diphosphate did not excite these fibres (n = 30). 8. The non-degradable analogue of ATP alpha,beta-methylene ATP (alpha,beta-mATP) was tenfold more potent than ATP while beta,gamma-methylene ATP (beta,gamma-mATP) was in active. 9. The selective P2x-purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid markedly attenuated the effect of ATP but not of capsaicin. The P2Y-purinoceptor antagonist Reactive Blue 2 was without effect. 10. Pretreatment with pertussis toxin (PTX) did not affect this action of ATP. 11. In the canine lungs ATP activates vagal C fibre nerve terminals. This action is mediated by P2X-purinoceptors and is independent of a PTX-sensitive guanine nucleotide binding protein (G protein).

Full text

PDF
273

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armour J. A., Huang M. H., Pelleg A., Sylvén C. Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res. 1994 Aug;28(8):1218–1225. doi: 10.1093/cvr/28.8.1218. [DOI] [PubMed] [Google Scholar]
  2. Bean B. P. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J Neurosci. 1990 Jan;10(1):1–10. doi: 10.1523/JNEUROSCI.10-01-00001.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bean B. P., Friel D. D. ATP-activated channels in excitable cells. Ion Channels. 1990;2:169–203. doi: 10.1007/978-1-4615-7305-0_5. [DOI] [PubMed] [Google Scholar]
  4. Benham C. D. Neurotransmitters. ATP joins the fast lane. Nature. 1992 Sep 10;359(6391):103–104. doi: 10.1038/359103a0. [DOI] [PubMed] [Google Scholar]
  5. Burnstock G. Do some nerve cells release more than one transmitter? Neuroscience. 1976 Aug;1(4):239–248. doi: 10.1016/0306-4522(76)90054-3. [DOI] [PubMed] [Google Scholar]
  6. CARDENAS M., ACEVES J., ALARCON G. EFFECTO DEL 'ACIDO ADENOSINTRIFOSF'ORICO SOBRE LAS PROPIEDADES FISIOL'OGICAS DEL CORAZ'ON. Arch Inst Cardiol Mex. 1964 Jul-Aug;34:485–494. [PubMed] [Google Scholar]
  7. Coleridge H. M., Coleridge J. C. Impulse activity in afferent vagal C-fibres with endings in the intrapulmonary airways of dogs. Respir Physiol. 1977 Apr;29(2):125–142. doi: 10.1016/0034-5687(77)90086-x. [DOI] [PubMed] [Google Scholar]
  8. Coleridge H. M., Coleridge J. C., Luck J. C. Pulmonary afferent fibres of small diameter stimulated by capsaicin and by hyperinflation of the lungs. J Physiol. 1965 Jul;179(2):248–262. doi: 10.1113/jphysiol.1965.sp007660. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAWES G. S., COMROE J. H., Jr Chemoreflexes from the heart and lungs. Physiol Rev. 1954 Apr;34(2):167–201. doi: 10.1152/physrev.1954.34.2.167. [DOI] [PubMed] [Google Scholar]
  10. Edwards F. A., Gibb A. J., Colquhoun D. ATP receptor-mediated synaptic currents in the central nervous system. Nature. 1992 Sep 10;359(6391):144–147. doi: 10.1038/359144a0. [DOI] [PubMed] [Google Scholar]
  11. Evans R. J., Derkach V., Surprenant A. ATP mediates fast synaptic transmission in mammalian neurons. Nature. 1992 Jun 11;357(6378):503–505. doi: 10.1038/357503a0. [DOI] [PubMed] [Google Scholar]
  12. Fieber L. A., Adams D. J. Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J Physiol. 1991 Mar;434:239–256. doi: 10.1113/jphysiol.1991.sp018467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Forrester T., Williams C. A. Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J Physiol. 1977 Jun;268(2):371–390. doi: 10.1113/jphysiol.1977.sp011862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fyffe R. E., Perl E. R. Is ATP a central synaptic mediator for certain primary afferent fibers from mammalian skin? Proc Natl Acad Sci U S A. 1984 Nov;81(21):6890–6893. doi: 10.1073/pnas.81.21.6890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Huang M. H., Sylvén C., Pelleg A., Smith F. M., Armour J. A. Modulation of in situ canine intrinsic cardiac neuronal activity by locally applied adenosine, ATP, or analogues. Am J Physiol. 1993 Oct;265(4 Pt 2):R914–R922. doi: 10.1152/ajpregu.1993.265.4.R914. [DOI] [PubMed] [Google Scholar]
  16. Hurt C. M., Wang L., Xu J., Sterious W., Pelleg A. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in dogs. II. Vagal afferent traffic. Am J Physiol. 1994 Sep;267(3 Pt 2):H1093–H1097. doi: 10.1152/ajpheart.1994.267.3.H1093. [DOI] [PubMed] [Google Scholar]
  17. Illes P., Nörenberg W. Neuronal ATP receptors and their mechanism of action. Trends Pharmacol Sci. 1993 Feb;14(2):50–54. doi: 10.1016/0165-6147(93)90030-n. [DOI] [PubMed] [Google Scholar]
  18. Jahr C. E., Jessell T. M. ATP excites a subpopulation of rat dorsal horn neurones. Nature. 1983 Aug 25;304(5928):730–733. doi: 10.1038/304730a0. [DOI] [PubMed] [Google Scholar]
  19. Krishtal O. A., Marchenko S. M., Obukhov A. G., Volkova T. M. Receptors for ATP in rat sensory neurones: the structure-function relationship for ligands. Br J Pharmacol. 1988 Dec;95(4):1057–1062. doi: 10.1111/j.1476-5381.1988.tb11739.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lambrecht G., Friebe T., Grimm U., Windscheif U., Bungardt E., Hildebrandt C., Bäumert H. G., Spatz-Kümbel G., Mutschler E. PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol. 1992 Jul 7;217(2-3):217–219. doi: 10.1016/0014-2999(92)90877-7. [DOI] [PubMed] [Google Scholar]
  21. Mills D. C., Robb I. A., Roberts G. C. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol. 1968 Apr;195(3):715–729. doi: 10.1113/jphysiol.1968.sp008484. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Paddle B. M., Burnstock G. Release of ATP from perfused heart during coronary vasodilatation. Blood Vessels. 1974;11(3):110–119. doi: 10.1159/000158005. [DOI] [PubMed] [Google Scholar]
  23. Pelleg A., Belhassen B., Ilia R., Laniado S. Comparative electrophysiologic effects of adenosine triphosphate and adenosine in the canine heart: influence of atropine, propranolol, vagotomy, dipyridamole and aminophylline. Am J Cardiol. 1985 Feb 15;55(5):571–576. doi: 10.1016/0002-9149(85)90249-8. [DOI] [PubMed] [Google Scholar]
  24. Pelleg A., Hurt C. M., Soler-Baillo J. M., Polansky M. Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in dogs. Am J Physiol. 1993 Aug;265(2 Pt 2):H681–H690. doi: 10.1152/ajpheart.1993.265.2.H681. [DOI] [PubMed] [Google Scholar]
  25. Pelleg A., Mitamura H., Michelson E. L., Dreifus L. S. Evidence against prostaglandin mediation of the differential electrophysiologic effects of ATP versus adenosine in the canine heart. J Cardiovasc Pharmacol. 1986 May-Jun;8(3):534–538. doi: 10.1097/00005344-198605000-00015. [DOI] [PubMed] [Google Scholar]
  26. Pelleg A., Mitamura H., Michelson E. L. Evidence for vagal involvement in the electrophysiologic actions of exogenous adenosine and adenosine triphosphate in the canine heart. J Auton Pharmacol. 1985 Sep;5(3):207–212. doi: 10.1111/j.1474-8673.1985.tb00121.x. [DOI] [PubMed] [Google Scholar]
  27. Ronca-Testoni S., Borghini F. Degradation of perfused adenine compounds up to uric acid in isolated rat heart. J Mol Cell Cardiol. 1982 Mar;14(3):177–180. doi: 10.1016/0022-2828(82)90116-x. [DOI] [PubMed] [Google Scholar]
  28. Silinsky E. M., Gerzanich V., Vanner S. M. ATP mediates excitatory synaptic transmission in mammalian neurones. Br J Pharmacol. 1992 Aug;106(4):762–763. doi: 10.1111/j.1476-5381.1992.tb14408.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Silinsky E. M., Hubbard J. I. Thermal synthesis of amino acids from a simulated primitive atmosphere. Nature. 1973 Jun 15;243(5407):404–405. doi: 10.1038/243404a0. [DOI] [PubMed] [Google Scholar]
  30. von Kügelgen I., Starke K. Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharmacol Sci. 1991 Sep;12(9):319–324. doi: 10.1016/0165-6147(91)90587-i. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES