Skip to main content
Medline Book to support NIHPA logoLink to Medline Book to support NIHPA
. 2024 Oct;28(69):1–141. doi: 10.3310/WGJT3471

Interventions for people with perceptual disorders after stroke: the PIONEER scoping review, Cochrane systematic review and priority setting project.

Christine Hazelton, Alex Todhunter-Brown, Pauline Campbell, Katie Thomson, Donald J Nicolson, Kris McGill, Charlie Sy Chung, Liam Dorris, David C Gillespie, Susan M Hunter, Linda J Williams, Marian C Brady
PMCID: PMC11586814  PMID: 39485540

Abstract

BACKGROUND

Stroke often affects recognition and interpretation of information from our senses, resulting in perceptual disorders. Evidence to inform treatment is unclear.

OBJECTIVE

To determine the breadth and effectiveness of interventions for stroke-related perceptual disorders and identify priority research questions.

METHODS

We undertook a scoping review and then Cochrane systematic review. Definitions, outcome prioritisation, data interpretation and research prioritisation were coproduced with people who had perceptual disorders post stroke and healthcare professionals. We systematically searched electronic databases (including MEDLINE, EMBASE, inception to August 2021) and grey literature. We included studies (any design) of interventions for people with hearing, smell, somatosensation, taste, touch or visual perception disorders following stroke. Abstracts and full texts were independently dual reviewed. Data were tabulated, synthesised narratively and mapped by availability, sense and interventions. Research quality was not evaluated. Our Cochrane review synthesised the randomised controlled trial data, evaluated risk of bias (including randomisation, blinding, reporting) and meta-analysed intervention comparisons (vs. controls or no treatment) using RevMan 5.4. We judged certainty of evidence using grading of recommendations, assessment, development and evaluation. Activities of daily living after treatment was our primary outcome. Extended activities of daily living, quality of life, mental health and psychological well-being perceptual functional and adverse event data were also extracted.

RESULTS

We included 80 studies (n = 893): case studies (36/80) and randomised controlled trials (22/80). No stroke survivor or family stakeholder involvement was reported. Studies addressed visual (42.5%, 34/80), somatosensation (35%, 28/80), auditory (8.7%, 7/80) and tactile (7.5%, 6/80) perceptual disorders; some studies focused on 'mixed perceptual disorders' (6.2%, 5/80 such as taste-smell disorders). We identified 93 pharmacological, non-invasive brain stimulation or rehabilitation (restitution, substitution, compensation or mixed) interventions. Details were limited. Studies commonly measured perceptual (75%, 60/80), motor-sensorimotor (40%, 32/80) activities of daily living (22.5%, 18/80) or sensory function (15%, 12/80) outcomes.

COCHRANE SYSTEMATIC REVIEW

We included 18 randomised controlled trials (n = 541) addressing tactile (3 randomised controlled trials; n = 70), somatosensory (7 randomised controlled trials; n = 196), visual (7 randomised controlled trials; n = 225) and mixed tactile-somatosensory (1 randomised controlled trial; n = 50) disorders. None addressed hearing, taste or smell disorders. One non-invasive brain stimulation, one compensation, 25 restitution and 4 mixed interventions were described. Risk of bias was low for random sequence generation (13/18), attrition (14/18) and outcome reporting (16/18). Perception was the most commonly measured outcome (11 randomised controlled trials); only 7 randomised controlled trials measured activities of daily living. Limited data provided insufficient evidence to determine the effectiveness of any intervention. Confidence in the evidence was low-very low. Our clinical (n = 4) and lived experience (n = 5) experts contributed throughout the project, coproducing a list of clinical implications and research priorities. Top research priorities included exploring the impact of, assessment of, and interventions for post-stroke perceptual disorders.

LIMITATIONS

Results are limited by the small number of studies identified and the small sample sizes, with a high proportion of single-participant studies. There was limited description of the perceptual disorders and intervention(s) evaluated. Few studies measured outcomes relating to functional impacts. There was limited investigation of hearing, smell, taste and touch perception disorders.

CONCLUSION

Evidence informing interventions for perceptual disorders after stroke is limited for all senses.

FUTURE WORK

Further research, including high-quality randomised controlled trials, to inform clinical practice are required.

STUDY REGISTRATION

This study is registered as PROSPERO CRD42019160270.

FUNDING

This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: NIHR128829) and is published in full in Health Technology Assessment; Vol. 28, No. 69. See the NIHR Funding and Awards Website for further award information.

Plain language summary

After a stroke, individuals may have difficulty understanding information gathered through their sense of sight, hearing, smell, taste, touch or somatosensation (body position, temperature, etc.), known as perceptual problems. We estimate perceptual problems affect around 240,000 stroke survivors in the UK, limiting their ability to understand the world around them, affecting everyday activities and reducing quality of life. Healthcare professionals may offer different treatments; medicine, brain stimulation, or rehabilitation activities including puzzles, strategies or physical therapy. We wanted to find the best treatments for stroke-related perceptual problems. We searched for all research on sight, hearing, smell, taste, touch and somatosensation perceptual treatments to find out (1) how well they worked, (2) what the research means for stroke survivors and healthcare professionals and (3) what research is needed next. People with stroke-related perceptual problems and healthcare experts produced this research together. We found 80 studies, involving 893 stroke survivors, describing 93 treatments. Eighteen of these studies used higher-quality randomised controlled trial designs; 535 stroke survivors took part, testing 32 treatments. Randomised controlled trials are important as one-half of those involved receive treatment and one-half do not; they provide the best evidence about whether a treatment works. Most treatments were for visual or somatosensation problems. Each study was small, provided few details about the participants or their treatment, and tested very different treatments. Few measured the effect of treatment on everyday life: only seven measured stroke survivors’ ability to take part in everyday activities. No trial asked stroke survivors about their experiences with the treatments offered. We do not have enough research to identify which treatments benefit the lives of people with stroke-related perceptual problems. We need more research into perceptual problems, especially the impact it has on stroke survivors’ lives, as well as bigger studies into well-described treatments, that measure the impact of the treatment on people’s lives.


Full text of this article can be found in Bookshelf.

References

  1. Hazelton C, Campbell P, Chung C, Dorris L, Gillespie D, Hunter D, et al. Perceptual disorders after stroke InterventiON EvidencE Review (PIONEER): a scoping review and Cochrane Review revision and expansion. Study Protocol (version 1.1). NIHR Health Technol J 2021;2021:1–34.
  2. Matlin M. Sensation and Perception. 2nd edn. Boston: Allyn and Bacon Inc; 1988.
  3. Royal College of Physicians. National Clinical Guidelines for Stroke. London, UK: Royal College of Physicians; 2016. URL: www.rcplondon.ac.uk/guidelines-policy/stroke-guidelines (accessed 3 February 2022).
  4. Lezak M, Howieson D, Bigler E, Tranel D. Neuropsychological Assessment. 5th edn. New York: Oxford University Press; 2012.
  5. Wolfe J, Kluender K, Levi D. Sensation and Perception. 3rd edn. Sunderland: Sinauer Associates; 2012.
  6. Bowen A, Knapp P, Gillespie D, Nicolson DJ, Vail A. Non-pharmacological interventions for perceptual disorders following stroke and other adult-acquired, non-progressive brain injury. Cochrane Database Syst Rev 2011;2011:CD007039. https://doi.org/10.1002/14651858.CD007039.pub2 doi: 10.1002/14651858.CD007039.pub2. [DOI] [PMC free article] [PubMed]
  7. World Health Organization. The ICF Browser. World Health Organization; 2010. URL: https://apps.who.int/classifications/icfbrowser/ (accessed 6 September 2022).
  8. World Health Organization. International Classification of Functioning, Disability and Health: ICF. Geneva: World Health Organization; 2001.
  9. Pollock A, Hazelton C, Rowe FJ, Jonuscheit S, Kernohan A, Angilley J, et al. Interventions for visual field defects in people with stroke. Cochrane Database Syst Rev 2019;5:CD008388. https://doi.org/10.1002/14651858.CD008388.pub3 doi: 10.1002/14651858.CD008388.pub3. [DOI] [PMC free article] [PubMed]
  10. Longley V, Hazelton C, Heal C, Pollock A, Woodward-Nutt K, Mitchell C, et al. Non‐pharmacological interventions for spatial neglect or inattention following stroke and other non‐progressive brain injury. Cochrane Database Syst Rev 2021;7:CD003586. doi: 10.1002/14651858.CD003586.pub4. [DOI] [PMC free article] [PubMed]
  11. Hummel T, Landis BN, Huttenbrink KB. Smell and taste disorders. GMS Curr Top Otorhinolaryngol Head Neck Surg 2011;10:Doc04. https://doi.org/10.3205/cto000077 doi: 10.3205/cto000077. [DOI] [PMC free article] [PubMed]
  12. Li X, Rastogi P, Gibbons JA, Chaudhury S. Visuo-cognitive skill deficits in Alzheimer’s disease and Lewy body disease: a comparative analysis. Ann Indian Acad Neurol 2014;17:12–8. https://doi.org/10.4103/0972-2327.128530 doi: 10.4103/0972-2327.128530. [DOI] [PMC free article] [PubMed]
  13. Ffytche DH, Blom JD, Catani M. Disorders of visual perception. J Neurol Neurosurg Psychiatry 2010;81:1280–7. https://doi.org/10.1136/jnnp.2008.171348 doi: 10.1136/jnnp.2008.171348. [DOI] [PubMed]
  14. Ego A, Lidzba K, Brovedani P, Belmonti V, Gonzalez-Monge S, Boudia B, et al. Visual-perceptual impairment in children with cerebral palsy: a systematic review. Dev Med Child Neurol 2015;57:46–51. https://doi.org/10.1111/dmcn.12687 doi: 10.1111/dmcn.12687. [DOI] [PubMed]
  15. Cascio C, McGlone F, Folger S, Tannan V, Baranek G, Pelphrey KA, et al. Tactile perception in adults with autism: a multidimensional psychophysical study. J Autism Dev Disord 2008;38:127–37. https://doi.org/10.1007/s10803-007-0370-8 doi: 10.1007/s10803-007-0370-8. [DOI] [PMC free article] [PubMed]
  16. Chung S, Son JW. Visual perception in autism spectrum disorder: a review of neuroimaging studies. Soa Chongsonyon Chongsin Uihak 2020;31:105–20. https://doi.org/10.5765/jkacap.200018 doi: 10.5765/jkacap.200018. [DOI] [PMC free article] [PubMed]
  17. Royal College of Physicians. Sentinel Stroke National Audit Programme (SSNAP). National Clinical Audit Annual Results Portfolio March 2016–April 2017. London: Royal College of Physicians. URL: www.strokeaudit.org/results/Clinical-audit/Clinical-CCG-LHB-LCG.aspx (accessed 4 February 2022).
  18. NHS National Services Scotland. Scottish Stroke Care Audit, Scottish Stroke Improvement Programme Report. Edinburgh: ISD Scotland Publications; 2017. URL: www.strokeaudit.scot.nhs.uk/Publications/docs/2017-07-11-SCCA-Report.pdf (accessed 4 February 2022).
  19. Patel A, Berdunov V, King D, Quayyum Z, Wittenberg R, Knapp M. Executive Summary Part 2: Burden of Stroke in the Next 20 Years and Potential Returns from Increased Spending on Research. London, UK: The Stroke Association; 2017. URL: www.stroke.org.uk/sites/default/files/costs_of_stroke_in_the_uk_report_-executive_summary_part_2.pdf (accessed 4 February 2022).
  20. Department of Health. Quality and Outcomes Framework (QOF) Achievement Data 2015/16. UK: Department of Health; 2016. URL: http://bit.ly/2hQNsMB (accessed 4 February 2022).
  21. Winward CE, Halligan PW, Wade DT. Somatosensory recovery: a longitudinal study of the first 6 months after unilateral stroke. Disabil Rehabil 2007;29:293–9. https://doi.org/10.1080/09638280600756489 doi: 10.1080/09638280600756489. [DOI] [PubMed]
  22. Connell LA, Lincoln NB, Radford KA. Somatosensory impairment after stroke: frequency of different deficits and their recovery. Clin Rehabil 2008;22:758–67. https://doi.org/10.1177/0269215508090674 doi: 10.1177/0269215508090674. [DOI] [PubMed]
  23. Gorst T, Rogers A, Morrison SC, Cramp M, Paton J, Freeman J, Marsden J. The prevalence, distribution, and functional importance of lower limb somatosensory impairments in chronic stroke survivors: a cross sectional observational study. Disabil Rehabil 2019;41:2443–50. https://doi.org/10.1080/09638288.2018.1468932 doi: 10.1080/09638288.2018.1468932. [DOI] [PubMed]
  24. Meyer S, De Bruyn N, Lafosse C, Van Dijk M, Michielsen M, Thijs L, et al. Somatosensory impairments in the upper limb poststroke: distribution and association with motor function and visuospatial neglect. Neurorehabil Neural Repair 2016;30:731–42. https://doi.org/10.1177/1545968315624779 doi: 10.1177/1545968315624779. [DOI] [PubMed]
  25. Rowe FJ, Hepworth LR, Howard C, Hanna KL, Cheyne CP, Currie J. High incidence and prevalence of visual problems after acute stroke: an epidemiology study with implications for service delivery. PLOS ONE 2019;14:e0213035. https://doi.org/10.1371/journal.pone.0213035 doi: 10.1371/journal.pone.0213035. [DOI] [PMC free article] [PubMed]
  26. Edmans J, Towle D, Lincoln N. The recovery of perceptual problems after stroke and the impact on daily life. Clin Rehabil 1991;5:301–9.
  27. Bellis T, Bellis J. Central auditory processing disorders in children and adults. In Celesia G, Hickok G, editors. Handbook of Clinical Neurology. Amsterdam, The Netherlands: Elsevier B.V.; 2015. pp. 537–56. doi: 10.1016/B978-0-444-62630-1.00030-5. [DOI] [PubMed]
  28. Koohi N, Vickers DA, Lakshmanan R, Chandrashekar H, Werring DJ, Warren JD, Bamiou DE. Hearing characteristics of stroke patients: prevalence and characteristics of hearing impairment and auditory processing disorders in stroke patients. J Am Acad Audiol 2017;28:491–505. https://doi.org/10.3766/jaaa.15139 doi: 10.3766/jaaa.15139. [DOI] [PubMed]
  29. Karpa MJ, Gopinath B, Rochtchina E, Wang JJ, Cumming RG, Sue CM, et al. Prevalence and neurodegenerative or other associations with olfactory impairment in an older community. J Aging Health 2010;22:154–68. https://doi.org/10.1177/0898264309353066 doi: 10.1177/0898264309353066. [DOI] [PubMed]
  30. Murphy C, Schubert CR, Cruickshanks KJ, Klein BEK, Klein R, Nondahl DM. Prevalence of olfactory impairment in older adults. JAMA 2002;288:2307–12. https://doi.org/10.1001/jama.288.18.2307 doi: 10.1001/jama.288.18.2307. [DOI] [PubMed]
  31. Liu G, Zong G, Doty RL, Sun Q. Prevalence and risk factors of taste and smell impairment in a nationwide representative sample of the US population: a cross-sectional study. BMJ Open 2016;6:e013246. https://doi.org/10.1136/bmjopen-2016-013246 doi: 10.1136/bmjopen-2016-013246. [DOI] [PMC free article] [PubMed]
  32. Heckmann JG, Stössel C, Lang CJG, Neundörfer B, Tomandl B, Hummel T. Taste disorders in acute stroke: a prospective observational study on taste disorders in 102 stroke patients. Stroke 2005;36:1690–4. https://doi.org/10.1161/01.STR.0000173174.79773.d3 doi: 10.1161/01.STR.0000173174.79773.d3. [DOI] [PubMed]
  33. Wehling E, Naess H, Wollschlaeger D, Hofstad H, Bramerson A, Bende M, et al. Olfactory dysfunction in chronic stroke patients. BMC Neurol 2015;15:199. https://doi.org/10.1186/s12883-015-0463-5 doi: 10.1186/s12883-015-0463-5. [DOI] [PMC free article] [PubMed]
  34. Meyer S, Karttunen AH, Thijs V, Feys H, Verheyden G. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Phys Ther 2014;94:1220–31. https://doi.org/10.2522/ptj.20130271 doi: 10.2522/ptj.20130271. [DOI] [PubMed]
  35. Bowden JL, Lin GG, McNulty PA. The prevalence and magnitude of impaired cutaneous sensation across the hand in the chronic period post-stroke. PLOS ONE 2014;9:e104153. https://doi.org/10.1371/journal.pone.0104153 doi: 10.1371/journal.pone.0104153. [DOI] [PMC free article] [PubMed]
  36. Carey LM, Matyas TA. Frequency of discriminative sensory loss in the hand after stroke in a rehabilitation setting. J Rehabil Med 2011;43:257–63. https://doi.org/10.2340/16501977-0662 doi: 10.2340/16501977-0662. [DOI] [PubMed]
  37. Rowe FJ. Stroke survivors’ views and experiences on impact of visual impairment. Brain Behav 2017;7:e00778. https://doi.org/10.1002/brb3.778 doi: 10.1002/brb3.778. [DOI] [PMC free article] [PubMed]
  38. Titus MN, Gall NG, Yerxa EJ, Roberson TA, Mack W. Correlation of perceptual performance and activities of daily living in stroke patients. Am J Occup Ther 1991;45:410–8. https://doi.org/10.5014/ajot.45.5.410 doi: 10.5014/ajot.45.5.410. [DOI] [PubMed]
  39. Ali M, Hazelton C, Lyden P, Pollock A, Brady M; VISTA Collaboration. Recovery from poststroke visual impairment: evidence from a clinical trials resource. Neurorehabil Neural Repair 2013;27:133–41. https://doi.org/10.1177/1545968312454683 doi: 10.1177/1545968312454683. [DOI] [PubMed]
  40. Bernspång B, Asplund K, Eriksson S, Fugl-Meyer AR. Motor and perceptual impairments in acute stroke patients: effects on self-care ability. Stroke 1987;18:1081–6. https://doi.org/10.1161/01.str.18.6.1081 doi: 10.1161/01.str.18.6.1081. [DOI] [PubMed]
  41. Bersano A, Burgio F, Gattinoni M, Candelise L; PROSIT Study Group. Aphasia burden to hospitalised acute stroke patients: need for an early rehabilitation programme. Int J Stroke 2009;4:443–7. http://dx.doi.org/10.1111/j.1747-4949.2009.00349.x doi: 10.1111/j.1747-4949.2009.00349.x. [DOI] [PubMed]
  42. Dickey L, Kagan A, Lindsay MP, Fang J, Rowland A, Black S. Incidence and profile of inpatient stroke-induced aphasia in Ontario, Canada. Arch Phys Med Rehabil 2010;91:196–202. https://doi.org/10.1016/j.apmr.2009.09.020 doi: 10.1016/j.apmr.2009.09.020. [DOI] [PubMed]
  43. Dutta TM, Josiah AF, Cronin CA, Wittenberg GF, Cole JW. Altered taste and stroke: a case report and literature review. Top Stroke Rehabil 2013;20:78–86. https://doi.org/10.1310/tsr2001-78 doi: 10.1310/tsr2001-78. [DOI] [PMC free article] [PubMed]
  44. Dávalos A, Ricart W, Gonzalez-Huix F, Soler S, Marrugat J, Molins A, et al. Effect of malnutrition after acute stroke on clinical outcome. Stroke 1996;27:1028–32. https://doi.org/10.1161/01.str.27.6.1028 doi: 10.1161/01.str.27.6.1028. [DOI] [PubMed]
  45. Green TL, McGregor LD, King KM. Smell and taste dysfunction following minor stroke: a case report. Can J Neurosci Nurs 2008;30:10–3. [PubMed]
  46. Hunter SM, Crome P. Hand function and stroke. Rev Clin Gerontol 2002;12:68–81. https://doi.org/10.1017/s0959259802012194
  47. Doyle S, Bennett S, Fasoli SE, McKenna KT. Interventions for sensory impairment in the upper limb after stroke. Cochrane Database Syst Rev 2010;12. https://doi.org/10.1002/14651858.CD006331.pub2 doi: 10.1002/14651858.CD006331.pub2. [DOI] [PMC free article] [PubMed]
  48. Tyson SF, Hanley M, Chillala J, Selley AB, Tallis RC. Sensory loss in hospital-admitted people with stroke: characteristics, associated factors, and relationship with function. Neurorehabil Neural Repair 2008;22:166–72. https://doi.org/10.1177/1545968307305523 doi: 10.1177/1545968307305523. [DOI] [PubMed]
  49. Sommerfeld DK, von Arbin MH. The impact of somatosensory function on activity performance and length of hospital stay in geriatric patients with stroke. Clin Rehabil 2004;18:149–55. https://doi.org/10.1191/0269215504cr710oa doi: 10.1191/0269215504cr710oa. [DOI] [PubMed]
  50. Surya N, Someshwar H. Rehabilitation in perceptual disorders in stroke patients. SVOA Neurol 2020;1:1–9.
  51. Connell LA, McMahon NE, Adams N. Stroke survivors’ experiences of somatosensory impairment after stroke: an interpretative phenomenological analysis. Physiotherapy 2014;100:150–5. https://doi.org/10.1016/j.physio.2013.09.003 doi: 10.1016/j.physio.2013.09.003. [DOI] [PubMed]
  52. Doyle SD, Bennett S, Dudgeon B. Upper limb post-stroke sensory impairments: the survivor’s experience. Disabil Rehabil 2014;36:993–1000. https://doi.org/10.3109/09638288.2013.825649 doi: 10.3109/09638288.2013.825649. [DOI] [PubMed]
  53. Stroke4Carers. Perceptual Problems. Scotland: Stroke4Carers; 2022. URL: www.stroke4carers.org/?p=349 (accessed 6 September 2022).
  54. Stroke Foundation. Vision and Senses. Australia: Stroke Foundation; 2022. URL: https://enableme.org.au/resources/vision-and-senses (accessed 6 September 2022).
  55. Carey LM, Oke LE, Matyas TA. Impaired touch discrimination after stroke: a quantitative test. Neurorehabil Neural Repair 1987;11:219–32.
  56. Koohi N, Vickers DA, Utoomprurkporn N, Werring DJ, Bamiou DE. A hearing screening protocol for stroke patients: an exploratory study. Front Neurol 2019;10:842. https://doi.org/10.3389/fneur.2019.00842 doi: 10.3389/fneur.2019.00842. [DOI] [PMC free article] [PubMed]
  57. de Vries SM, Heutink J, Melis-Dankers BJM, Vrijling ACL, Cornelissen FW, Tucha O. Screening of visual perceptual disorders following acquired brain injury: a Delphi study. Appl Neuropsychol Adult 2018;25:197–209. http://dx.doi.org/10.1080/23279095.2016.1275636 doi: 10.1080/23279095.2016.1275636. [DOI] [PubMed]
  58. Hajek V, Kates M, Donnelly R, McGree S. The effect of visuo-spatial training in patients with right hemisphere stroke. Can J Rehabil 1993;6:175–86.
  59. Taylor MM, Schaeffer JN, Blumenthal FS, Grisell JL. Perceptual training in patients with left hemiplegia. Arch Phys Med Rehabil 1971;52:163–9. [PubMed]
  60. Edmans JA, Webster J, Lincoln NB. A comparison of two approaches in the treatment of perceptual problems after stroke. Clin Rehabil 2000;14:230–43. https://doi.org/10.1191/026921500673333145 doi: 10.1191/026921500673333145. [DOI] [PubMed]
  61. Dirette DK, Hinojosa J, Carnevale GJ. Comparison of remedial and compensatory interventions for adults with acquired brain injuries. J Head Trauma Rehabil 1999;14:595–601. https://doi.org/10.1097/00001199-199912000-00008 doi: 10.1097/00001199-199912000-00008. [DOI] [PubMed]
  62. Mazer BL, Sofer S, Korner-Bitensky N, Gelinas I, Hanley J, Wood-Dauphinee S. Effectiveness of a visual attention retraining program on the driving performance of clients with stroke. Arch Phys Med Rehabil 2003;84:541–50. https://doi.org/10.1053/apmr.2003.50085 doi: 10.1053/apmr.2003.50085. [DOI] [PubMed]
  63. Lueck AH, Dutton GN. Vision and the Brain: Understanding Cerebral Visual Impairment in Children. 1st edn. New York: AFB Press; 2015.
  64. Kang S, Kim D, Seo K, et al. A computerized visual perception rehabilitation programme with interative computer interface using motion tracking technology – a randomized controlled, single-blind, pilot clinical trial. Clin Rehabil 2009;35:434–44. doi: 10.1177/0269215508101732. [DOI] [PubMed]
  65. Kihoon J, Yu J, Jung J. Effects of virtual reality-based rehabilitation on upper extremity function and visual perception in stroke patients: a randomized controlled trial. J Phys Ther Sci 2012;24:1205–8.
  66. Cho HY, Kim K, Lee B, Jung J. The effect of neurofeedback on a brain wave and visual perception in stroke: a randomised controlled trial. J Phys Ther Sci 2015;27:673–6. https://doi.org/10.1589/jpts.27.673 doi: 10.1589/jpts.27.673. [DOI] [PMC free article] [PubMed]
  67. Kim KU, Kim SH, An TG. Effect of transcranial direct current stimulation on visual perception function and performance capability of activities of daily living in stroke patients. J Phys Ther Sci 2016;28:2572–5. doi: 10.1589/jpts.28.2572. [DOI] [PMC free article] [PubMed]
  68. Koohi N, Vickers D, Chandrashekar H, Tsang B, Werring D, Bamiou DE. Auditory rehabilitation after stroke: treatment of auditory processing disorders in stroke patients with personal frequency-modulated (FM) systems. Disabil Rehabil 2017;39:586–93. https://doi.org/10.3109/09638288.2016.1152608 doi: 10.3109/09638288.2016.1152608. [DOI] [PubMed]
  69. Weihing J, Chermak GD, Musiek FE. Auditory training for central auditory processing disorder. Semin Hear 2015;36:199–215. https://doi.org/10.1055/s-0035-1564458 doi: 10.1055/s-0035-1564458. [DOI] [PMC free article] [PubMed]
  70. Heckmann JG, Heckmann SM, Lang CJ, Hummel T. Neurological aspects of taste disorders. Arch Neurol 2003;60:667–71. https://doi.org/10.1001/archneur.60.5.667 doi: 10.1001/archneur.60.5.667. [DOI] [PubMed]
  71. Henkin RI, Schecter PJ, Friedewald WT, Demets DL, Raff M. A double blind study of the effects of zinc sulfate on taste and smell dysfunction. Am J Med Sci 1976;272:285–99. https://doi.org/10.1097/00000441-197611000-00006 doi: 10.1097/00000441-197611000-00006. [DOI] [PubMed]
  72. The Stroke Association. Sensory Problems. UK: The Stroke Association; 2018. URL: www.stroke.org.uk/effects-of-stroke/physical-effects-of-stroke/sensory-problems (accessed 3 February 2022).
  73. Cahill LS, Lannin NA, Mak-Yuen YYK, Turville ML, Carey LM. Changing practice in the assessment and treatment of somatosensory loss in stroke survivors: protocol for a knowledge translation study. BMC Health Serv Res 2018;18:34. https://doi.org/10.1186/s12913-018-2829-z doi: 10.1186/s12913-018-2829-z. [DOI] [PMC free article] [PubMed]
  74. Carey L, Macdonell R, Matyas TA. SENSe: study of the effectiveness of neurorehabilitation on sensation: a randomized controlled trial. Neurorehabil Neural Repair 2011;25:304–13. https://doi.org/10.1177/1545968310397705 doi: 10.1177/1545968310397705. [DOI] [PubMed]
  75. An CM, Roh JS, Kim TH, Choi HS, Choi KH, Kim GM. Effects of game-based postural vertical training on pusher behavior, postural control, and activity of daily living in patients with acute stroke: a pilot study. Phys Ther Korea 2019;26:57–66. https://doi.org/10.12674/ptk.2019.26.3.057
  76. Jones SA, Shinton RA. Improving outcome in stroke patients with visual problems. Age Ageing 2006;35:560–5. https://doi.org/10.1093/ageing/afl074 doi: 10.1093/ageing/afl074. [DOI] [PubMed]
  77. Bamiou D. Hearing disorders in stroke. In Aminoff M, Boller F, Swaab D, editors. Handbook of Clinical Neurology. London: Elsevier; 2015. pp. 633–47. doi: 10.1016/B978-0-444-62630-1.00035-4. [DOI] [PubMed]
  78. Hazelton C, Pollock A, Taylor A, Davis B, Walsh G, Brady MC. A qualitative exploration of the effect of visual field loss on daily life in home-dwelling stroke survivors. Clin Rehabil 2019;33:1264–73. https://doi.org/10.1177/0269215519837580 doi: 10.1177/0269215519837580. [DOI] [PubMed]
  79. Rowe FJ, Walker M, Rockliffe J, Pollock A, Noonan C, Howard C, et al. Care provision for poststroke visual impairment. J Stroke Cerebrovasc Dis 2015;24:1131–44. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.12.035 doi: 10.1016/j.jstrokecerebrovasdis.2014.12.035. [DOI] [PubMed]
  80. Rowe FJ, Walker M, Rockliffe J, Pollock A, Noonan C, Howard C, et al. Care Provision and Unmet Need for Post Stroke Visual Impairment. Final Report. London: Thomas Pocklington Trust; 2014. URL: www.stroke.org.uk/sites/default/files/final_report_unmet_need_2013.pdf (accessed 3 February 2022).
  81. Colwell MJ, Demeyere N, Vancleef K. Visual perceptual deficit screening in stroke survivors: evaluation of current practice in the United Kingdom and Republic of Ireland. Disabil Rehabil 2021;44:6620–6632. https://doi.org/10.1080/09638288.2021.1970246 doi: 10.1080/09638288.2021.1970246. [DOI] [PubMed]
  82. Pollock A, Hazelton C, Brady M. Visual problems after stroke: a survey of current practice by occupational therapists working in UK stroke inpatient settings. Top Stroke Rehabil 2011;18:643–51. https://doi.org/10.1310/tsr18s01-643 doi: 10.1310/tsr18s01-643. [DOI] [PubMed]
  83. Pollock A, Hazelton C, Brady M. Orthoptic assessment and management of patients with stroke in Scotland. Br Ir Orthopt J 2011;8:36–42.
  84. National Institute for Health and Care Excellence (NICE). Stroke Rehabilitation in Adults. Clinical Guideline [CG 162]. London, UK: National Institute for Health and Care Excellence; 2013. URL: www.nice.org.uk/guidance/cg162 (accessed 3 February 2022).
  85. Scottish Intercollegiate Guidelines Network. Sign 118: Management of Patients with Stroke: Rehabilitation, Prevention and Management of Complications, and Discharge Planning. A National Clinical Guideline. Edinburgh, Scotland: Scottish Intercollegiate Guidelines Network (SIGN); 2010. URL: www.sign.ac.uk/media/1056/sign118.pdf (accessed 3 February 2022).
  86. British and Irish Orthoptic Society. British and Irish Orthoptic Society (BIOS) Orthoptic Stroke/Neuro rehab Care Pathway. Birmingham, UK; 2015. URL: www.orthoptics.org.uk/resources/clinical-advisory-group/stroke-and-neuro-rehabilitation/ (accessed 3 February 2022).
  87. Royal College of Paediatrics and Child Health. Stroke in Childhood – Clinical Guideline for Diagnosis, Management and Rehabilitation. London, UK: Royal College of Paediatrics and Child Health; 2017. URL: www.rcpch.ac.uk/resources/stroke-in-childhood-clinical-guideline (accessed 3 February 2022).
  88. Jutai JW, Bhogal SK, Foley NC, Bayley M, Teasell RW, Speechley MR. Treatment of visual perceptual disorders post stroke. Top Stroke Rehabil 2003;10:77–106. https://doi.org/10.1310/07BE-5E1N-735J-1C6U doi: 10.1310/07BE-5E1N-735J-1C6U. [DOI] [PubMed]
  89. Schabrun SM, Hillier S. Evidence for the retraining of sensation after stroke: a systematic review. Clin Rehabil 2009;23:27–39. https://doi.org/10.1177/0269215508098897 doi: 10.1177/0269215508098897. [DOI] [PubMed]
  90. Teasell RW, Salter K, Cotoi A, et al. Perceptual Disorders [need more information]. London; 2018.
  91. Pollock A, St George B, Fenton M, Firkins L. Top ten research priorities relating to life after stroke. Lancet Neurol 2012;11:209. https://doi.org/10.1016/S1474-4422(12)70029-7 doi: 10.1016/S1474-4422(12)70029-7. [DOI] [PubMed]
  92. The Stroke Association. Shaping Stroke Research to Rebuild Lives. The Stroke Priority Setting Partnership Results for Investment (June 2021). UK: Stroke Association; 2021. URL: www.stroke.org.uk/sites/default/files/research/stroke_priority_setting_partnership_full_report.pdf (accessed 25 March 2022).
  93. James Lind Alliance. Neuro-ophthalmology Top 10. UK: James Lind Alliance; 2022.
  94. Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soci Res Methodol 2005;8:19–32. https://doi.org/10.1080/1364557032000119616
  95. Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci 2010;5(69). https://doi.org/10.1186/1748-5908-5-69 doi: 10.1186/1748-5908-5-69. [DOI] [PMC free article] [PubMed]
  96. Useem J, Brennan A, LaValley M, Vickery M, Ameli O, Reinen N, Gill CJ. Systematic differences between Cochrane and non-Cochrane meta-analyses on the same topic: a matched pair analysis. PLOS ONE 2015;10:e0144980. https://doi.org/10.1371/journal.pone.0144980 doi: 10.1371/journal.pone.0144980. [DOI] [PMC free article] [PubMed]
  97. Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014;348:g1687. https://doi.org/10.1136/bmj.g1687 doi: 10.1136/bmj.g1687. [DOI] [PubMed]
  98. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ; GRADE Working Group. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 2008;336:924–6. https://doi.org/10.1136/bmj.39489.470347.AD doi: 10.1136/bmj.39489.470347.AD. [DOI] [PMC free article] [PubMed]
  99. Camden C, Shikako-Thomas K, Nguyen T, Graham E, Thomas A, Sprung J, et al. Engaging stakeholders in rehabilitation research: a scoping review of strategies used in partnerships and evaluation of impacts. Disabil Rehabil 2015;37:1390–400. http://dx.doi.org/10.3109/09638288.2014.963705 doi: 10.3109/09638288.2014.963705. [DOI] [PubMed]
  100. Pollock A, Campbell P, Struthers C, Synnot A, Nunn J, Hill S, et al. Stakeholder involvement in systematic reviews: a protocol for a systematic review of methods, outcomes and effects. Res Involv Engagem 2017;3:9. https://doi.org/10.1186/s40900-017-0060-4 doi: 10.1186/s40900-017-0060-4. [DOI] [PMC free article] [PubMed]
  101. Pollock A, Campbell P, Baer G, Choo PL, Morris J, Forster A. User involvement in a Cochrane systematic review: using structured methods to enhance the clinical relevance, usefulness and usability of a systematic review update. Syst Rev 2015;4:55. https://doi.org/10.1186/s13643-015-0023-5 doi: 10.1186/s13643-015-0023-5. [DOI] [PMC free article] [PubMed]
  102. Manera K, Hanson C, Gutman T, Tong A. Consensus methods: nominal group technique. In Liamputtong P, editor. Handbook of Research Methods in Health Social Sciences. Singapore: Springer; 2019. pp. 1–14. https://doi.org/10.1007/978-981-10-5251-4_100
  103. Pollock A, Campbell P, Struthers C, Synnot A, Nunn J, Hill S, et al. Development of the ACTIVE framework to describe stakeholder involvement in systematic reviews. J Health Serv Res Policy 2019;24:245–55. https://doi.org/10.1177/1355819619841647 doi: 10.1177/1355819619841647. [DOI] [PubMed]
  104. Pollock A, Campbell P, Struthers C, Synnot A, Nunn J, Hill S, et al. Stakeholder involvement in systematic reviews: a scoping review. Syst Rev 2018;7:208. https://doi.org/10.1186/s13643-018-0852-0 doi: 10.1186/s13643-018-0852-0. [DOI] [PMC free article] [PubMed]
  105. Pollock A, Morley R, Watts C. Involving People: A Learning Resource for Systematic Review Authors. UK: Cochrane Collaboration; 2022. URL: https://training.cochrane.org/involving-people (accessed 10 February 2022).
  106. INVOLVE. Public Involvement in Research and Research Ethics Committee Review. 2016. URL: www.invo.org.uk/wp-content/uploads/2016/05/HRA-INVOLVE-updated-statement-2016.pdf (accessed 25 March 2022).
  107. Cochrane Collaboration. Cochrane Review Ecosystem. Cochrane Collaboration; 2016. URL: http://community.cochrane.org/review-production/cochrane-review-ecosystem (accessed 26 January 2022).
  108. Staniszewska S, Brett J, Simera I, Seers K, Mockford C, Goodlad S, et al. GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research. BMJ 2017;358:j3453. https://doi.org/10.1136/bmj.j3453 doi: 10.1136/bmj.j3453. [DOI] [PMC free article] [PubMed]
  109. Hickey G, Brearley S, Coldham T, Denegri S, Green G, Staniszewska S, et al. Guidance on Co-producing a Research Project. Southampton: INVOLVE; 2018. URL: www.invo.org.uk/wp-content/uploads/2019/04/Copro_Guidance_Feb19.pdf (accessed 10 February 2022).
  110. Patton MQ. Qualitative Research and Evaluation Methods. 3rd edn. Saint Paul, MN: SAGE Publications Ltd; 2002.
  111. Chung CSY, Pollock A, Campbell T, Durward BR, Hagen S. Cognitive rehabilitation for executive dysfunction in adults with stroke or other adult non-progressive acquired brain damage. Cochrane Database Syst Rev 2013;2013:CD008391. https://doi.org/10.1002/14651858.CD008391.pub2 doi: 10.1002/14651858.CD008391.pub2. [DOI] [PMC free article] [PubMed]
  112. Hazelton C, McGill K, Campbell P, Todhunter-Brown A, Thomson K, Nicolson DJ, et al. Perceptual disorders after stroke: a scoping review of interventions. Stroke 2022;53:1772–87. https://doi.org/10.1161/STROKEAHA.121.035671 doi: 10.1161/STROKEAHA.121.035671. [DOI] [PMC free article] [PubMed]
  113. Mays N, Roberts E, Popay J. Synthesising research evidence. In Fulop N, Allen P, Clarke A, Black N editors. Methods for Studying the Delivery and Organisation of Health Services. London: Routledge; 2001. p. 194.
  114. Daudt HML, van Mossel C, Scott SJ. Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. BMC Med Res Methodol 2013;13:48. https://doi.org/10.1186/1471-2288-13-48 doi: 10.1186/1471-2288-13-48. [DOI] [PMC free article] [PubMed]
  115. Peters MD, Godfrey CM, Khalil H, McInerney P, Parker D, Soares CB. Guidance for conducting systematic scoping reviews. Int J Evid Based Healthc 2015;13:141–6. https://doi.org/10.1097/XEB.0000000000000050 doi: 10.1097/XEB.0000000000000050. [DOI] [PubMed]
  116. Snilstveit B, Vojtkova M, Bhavsar A, Stevenson J, Gaarder M. Evidence & gap maps: a tool for promoting evidence informed policy and strategic research agendas. J Clin Epidemiol 2016;79:120–9. https://doi.org/10.1016/j.jclinepi.2016.05.015 doi: 10.1016/j.jclinepi.2016.05.015. [DOI] [PubMed]
  117. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for Scoping Reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018;169:467–73. https://doi.org/10.7326/M18-0850 doi: 10.7326/M18-0850. [DOI] [PubMed]
  118. Karnath HO, Broetz D. Understanding and treating ‘pusher syndrome’. Phys Ther 2003;83:1119–25. [PubMed]
  119. McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS peer review of electronic search strategies: 2015 guideline statement. J Clin Epidemiol 2016;75:40–6. https://doi.org/10.1016/j.jclinepi.2016.01.021 doi: 10.1016/j.jclinepi.2016.01.021. [DOI] [PubMed]
  120. Bramer WM, Giustini D, de Jonge GB, Holland L, Bekhuis T. De-duplication of database search results for systematic reviews in EndNote. J Med Libr Assoc 2016;104:240–3. https://doi.org/10.3163/1536-5050.104.3.014 doi: 10.3163/1536-5050.104.3.014. [DOI] [PMC free article] [PubMed]
  121. Phillipson L, Hammond A. More than talking. Int J Qual Methods 2018;17:878278. https://doi.org/10.1177/1609406918782784
  122. Debas HT, Gosselin R, McCord C, Thind A. Chapter 67. Surgery. In Jamison DT, Breman JG, Measham AR, Alleyne G, Claeson M, Evans DB, editors. Disease Control Priorities in Developing Countries. 2nd edn. New York: Oxford University Press; 2006.
  123. Boes AD, Kelly MS, Trapp NT, Stern AP, Press DZ, Pascual-Leone A. Noninvasive brain stimulation: challenges and opportunities for a new clinical specialty. J Neuropsychiatry Clin Neurosci 2018;30:173–9. https://doi.org/10.1176/appi.neuropsych.17110262 doi: 10.1176/appi.neuropsych.17110262. [DOI] [PubMed]
  124. World Health Organization. Rehabilitation. Geneva: World Health Organization; 2021. URL: www.who.int/news-room/fact-sheets/detail/rehabilitation (accessed 28 March 2022).
  125. Kerkhoff G. Neurovisual rehabilitation: recent developments and future directions. J Neurol Neurosurg Psychiatry 2000;68:691–706. doi: 10.1136/jnnp.68.6.691. [DOI] [PMC free article] [PubMed]
  126. Hetrick SE, Parker AG, Callahan P, Purcell R. Evidence mapping: illustrating an emerging methodology to improve evidence-based practice in youth mental health. J Eval Clin Pract 2010;16:1025–30. https://doi.org/10.1111/j.1365-2753.2008.01112.x doi: 10.1111/j.1365-2753.2008.01112.x. [DOI] [PubMed]
  127. Miake-Lye IM, Hempel S, Shanman R, Shekelle PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst Rev 2016;5:28. https://doi.org/10.1186/s13643-016-0204-x doi: 10.1186/s13643-016-0204-x. [DOI] [PMC free article] [PubMed]
  128. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. https://doi.org/10.1136/bmj.n71 doi: 10.1136/bmj.n71. [DOI] [PMC free article] [PubMed]
  129. Colarusso RP, Hammill DD. The Motor Free Visual Perception Test (MVPT-3). Navato, CA: Academic Therapy Publications; 2003.
  130. Chen CC, Liu HC. Low-dose aripiprazole resolved complex hallucinations in the left visual field after right occipital infarction (Charles Bonnet syndrome). Psychogeriatrics 2011;11:116–8. https://doi.org/10.1111/j.1479-8301.2010.00353.x doi: 10.1111/j.1479-8301.2010.00353.x. [DOI] [PubMed]
  131. Nakagawa N, Akai F, Niiyama K, Asai T, Tanada M. [A case of peduncular hallucination after aneurysmal subarachnoid hemorrhage]. No To Shinkei 1999;51:65–8. [PubMed]
  132. Nguyen H, Le C, Nguyen H. Charles Bonnet syndrome in an elderly patient concurrent with acute cerebellar infarction treated successfully with haloperidol. J Am Geriatr Soc 2011;59:761–2. https://doi.org/10.1111/j.1532-5415.2011.03363.x doi: 10.1111/j.1532-5415.2011.03363.x. [DOI] [PubMed]
  133. Roberts-Woodbury J, Herrington H. Visual hallucinations after a stroke. J Am Geriatr Soc 2016;64:S159.
  134. Cogan DG. Visual hallucinations as release phenomena. Albrecht Von Graefes Arch Klin Exp Ophthalmol 1973;188:139–50. http://dx.doi.org/10.1007/BF00407835 doi: 10.1007/BF00407835. [DOI] [PubMed]
  135. Flint AC, Loh JP, Brust JC. Vivid visual hallucinations from occipital lobe infarction. Neurology 2005;65:756. https://doi.org/10.1212/01.wnl.0000180350.58985.5f doi: 10.1212/01.wnl.0000180350.58985.5f. [DOI] [PubMed]
  136. Poetter CE, Vyas BB, Stewart JT, Haley JA. An unusual case of poststroke hallucinations. J Am Geriatr Soc 2012;60:165–6. https://doi.org/10.1111/j.1532-5415.2011.03709.x doi: 10.1111/j.1532-5415.2011.03709.x. [DOI] [PubMed]
  137. Rafique SA, Richards JR, Steeves JKE. rTMS reduces cortical imbalance associated with visual hallucinations after occipital stroke. Neurology 2016;87:1493–500. https://doi.org/10.1212/WNL.0000000000003180 doi: 10.1212/WNL.0000000000003180. [DOI] [PubMed]
  138. Brunsdon R, Nickels L, Coltheart M, Joy P. Assessment and treatment of childhood topographical disorientation: a case study. Neuropsychol Rehabil 2007;17:53–94. https://doi.org/10.1080/09602010600562575 doi: 10.1080/09602010600562575. [DOI] [PubMed]
  139. Tanemura R. Awareness in apraxia and agnosia. Top Stroke Rehabil 1999;6:33–42. http://dx.doi.org/10.1310/U9KU-M4X8-DMRQ-9TR7 doi: 10.1310/U9KU-M4X8-DMRQ-9TR7. [DOI] [PubMed]
  140. Zihl J. Colour vision deficits. In Rehabilitation of Visual Disorders After Brain Injury. Hove, UK: Psychology Press; 2000. pp. 102–6.
  141. McDowell N, Dutton GN. Hemianopia and features of Balint syndrome following occipital Lobe hemorrhage: identification and patient understanding have aided functional improvement years after onset. Case Rep Ophthalmol Med 2019;2019:3864572. https://doi.org/10.1155/2019/3864572 doi: 10.1155/2019/3864572. [DOI] [PMC free article] [PubMed]
  142. Gottlieb D, Calvanio R, Levine DN. Reappearance of the visual percept after intentional blinking in a patient with Balint’s syndrome. J Clin Neuroophthalmol 1991;11:62–5. [PubMed]
  143. Burr M, Hazen B. The use of television in the rehabilitation of stroke patients with perceptual difficulties. Aust Occup Ther J 1972;19:19–22. https://doi.org/10.1111/j.1440-1630.1972.tb00524.x
  144. Choi D, Choi W, Lee S. Influence of Nintendo Wii Fit balance game on visual perception, postural balance, and walking in stroke survivors: a pilot randomized clinical trial. Games Health J 2018;7:377–84. https://doi.org/10.1089/g4h.2017.0126
  145. Dutton GN, Chokron S, Little S, McDowell N. Posterior parietal visual dysfunction: an explanatory review. Vision Dev Rehabil 2017;3:10–22. https://doi.org/10.31707/VDR2017.3.1.p10
  146. Edmans JA, Lincoln NB. Treatment of visual perceptual deficits after stroke: single case studies on four patients with right hemiplegia. Br J Occup Ther 1991;54:139–44.
  147. Kang SH, Kim DK, Seo KM, Choi KN, Yoo JY, Sung SY, et al. A computerized visual perception rehabilitation programme with interactive computer interface using motion tracking technology – a randomized controlled, single-blinded, pilot clinical trial study. Clin Rehabil 2009;23:434–44. doi: 10.1177/0269215508101732. [DOI] [PubMed]
  148. Kim EJ, Lee KE, Lee KL, Kim HG, Yoon YH, Jeon SY, et al. Change of visual perception in geriatric strokes after visuomotor coordination training. J Korean Acad Rehab Med 2011;35:174–9.
  149. Zihl J. Disorders in space perception. In Rehabilitation of Visual Disorders After Brain Injury. Hove, UK: Psychology Press; 2000. pp. 110–22.
  150. Lincoln NB, Whiting SE, Cockburn J, Bhavnani G. An evaluation of perceptual retraining. Int Rehabil Med 1985;7:99–101. https://doi.org/10.3109/03790798509166132 doi: 10.3109/03790798509166132. [DOI] [PubMed]
  151. Zihl J. Visual agnosia. In Rehabilitation of Visual Disorders After Brain Injury. Hove, UK: Psychology Press; 2000. pp. 136–50.
  152. Park JH, Park JH. The effects of a Korean computer-based cognitive rehabilitation program on cognitive function and visual perception ability of patients with acute stroke. J Phys Ther Sci 2015;27:2577–9. https://doi.org/10.1589/jpts.27.2577 doi: 10.1589/jpts.27.2577. [DOI] [PMC free article] [PubMed]
  153. O’Hare AE, Dutton GN, Green D, Coull R. Evolution of a form of pure alexia without agraphia in a child sustaining occipital lobe infarction at 2 1/2 years. Dev Med Child Neurol 1998;40:417–20. [PubMed]
  154. Chen P, Hartman AJ, Priscilla Galarza C, DeLuca J. Global processing training to improve visuospatial memory deficits after right-brain stroke. Arch Clin Neuropsychol 2012;27:891–905. https://doi.org/10.1093/arclin/acs089 doi: 10.1093/arclin/acs089. [DOI] [PMC free article] [PubMed]
  155. Funk J, Finke K, Reinhart S, Kardinal M, Utz KS, Rosenthal A, et al. Effects of feedback-based visual line-orientation discrimination training for visuospatial disorders after stroke. Neurorehabil Neural Repair 2013;27:142–52. https://doi.org/10.1177/1545968312457826 doi: 10.1177/1545968312457826. [DOI] [PubMed]
  156. Zihl J. Visual agnosia: Balint’s syndrome and its treatment. In Rehabilitation of Visual Disorders After Brain Injury. Hove, UK: Psychology Press; 2000. pp. 122–31.
  157. Towle D, Edmans JA, Lincoln NB. An evaluation of a group treatment programme for stroke patients with perceptual deficits. Int J Rehabil Res 1990;13:328–35. https://doi.org/10.1097/00004356-199012000-00007 doi: 10.1097/00004356-199012000-00007. [DOI] [PubMed]
  158. Gillen JA, Dutton GN. Balint’s syndrome in a 10-year-old male. Dev Med Child Neurol 2003;45:349–52. https://doi.org/10.1017/s0012162203000641 doi: 10.1017/s0012162203000641. [DOI] [PubMed]
  159. Weinberg J, Piasetsky E, Diller L, Gordon W. Treating perceptual organization deficits in nonneglecting RBD stroke patients. J Clin Neuropsychol 1982;4:59–75. https://doi.org/10.1080/01688638208401117 doi: 10.1080/01688638208401117. [DOI] [PubMed]
  160. Zaharia-Pushkash O, Oleg P, Rodica V, Andrei U. Posterior cerebral artery stroke with Balint’s syndrome and severe cognitive impairment: clinical and neuroimaging correlation. Int J Stroke 2010;5(Suppl. 2):365–6.
  161. Ko EJ, Chun MH, Kim DY, Kang Y, Lee SJ, Yi JH, et al. Frenkel’s exercise on lower limb sensation and balance in subacute ischemic stroke patients with impaired proprioception. Neurol Asia 2018;23:217–24.
  162. An CM, Ko MH, Kim DH, Kim GW. Effect of postural training using a whole-body tilt apparatus in subacute stroke patients with lateropulsion: a single-blinded randomized controlled trial. Ann Phys Rehabil Med 2021;64:101393. https://doi.org/10.1016/j.rehab.2020.05.001 doi: 10.1016/j.rehab.2020.05.001. [DOI] [PubMed]
  163. Bergmann J, Krewer C, Jahn K, Müller F. Robot-assisted gait training to reduce pusher behavior: a randomized controlled trial. Neurology 2018;91:e1319–27. https://doi.org/10.1212/WNL.0000000000006276 doi: 10.1212/WNL.0000000000006276. [DOI] [PubMed]
  164. Broetz D, Johannsen L, Karnath HO. Time course of ‘pusher syndrome’ under visual feedback treatment. Physiother Res Int 2004;9:138–43. https://doi.org/10.1002/pri.314 doi: 10.1002/pri.314. [DOI] [PubMed]
  165. Freitas ACM, Bezerra LAP, de Oliveira PCA, Freitas LM, da Silva SR, de Cirne GN, et al. Evaluation of the effectiveness of mirror therapy in Pusher syndrome and hemineglect in post-stroke patients. Fisioter Bras 2017;18:362–8.
  166. Fujino Y, Amimoto K, Sugimoto S, Fukata K, Inoue M, Takahashi H, Makita S. Prone positioning reduces severe pushing behavior: three case studies. J Phys Ther Sci 2016;28:2690–3. https://doi.org/10.1589/jpts.28.2690 doi: 10.1589/jpts.28.2690. [DOI] [PMC free article] [PubMed]
  167. Fujino Y, Takahashi H, Fukata K, Inoue M, Shida K, Matsuda T, et al. Electromyography-guided electrical stimulation therapy for patients with pusher behavior: a case series. NeuroRehabilitation 2019;45:537–45. https://doi.org/10.3233/NRE-192911 doi: 10.3233/NRE-192911. [DOI] [PubMed]
  168. Gillespie J, Callender L, Driver S. Usefulness of a standing frame to improve contraversive pushing in a patient post-stroke in inpatient rehabilitation. Proc (Bayl Univ Med Cent) 2019;32:440–2. https://doi.org/10.1080/08998280.2019.1593763 doi: 10.1080/08998280.2019.1593763. [DOI] [PMC free article] [PubMed]
  169. Jahn K, Müller F, Koenig E, Krewer C, Tillmann S, Bergmann J. Rehabilitation of verticality perception using a new training method. J Neurol 2017;264:26–7. https://doi.org/10.1007/s00415-017-8435-x doi: 10.1007/s00415-017-8435-x. [DOI] [PubMed]
  170. Jang SH, Lee HD. Recovery of an injured medial lemniscus with concurrent recovery of pusher syndrome in a stroke patient: a case report. Medicine (Baltimore) 2018;97:e10963. https://doi.org/10.1097/MD.0000000000010963 doi: 10.1097/MD.0000000000010963. [DOI] [PMC free article] [PubMed]
  171. Jokelainen L, Jokelainen M. Työntöoireyhtymä. Duodecim 2000;116:144–7. [PubMed]
  172. Kim MS. Effect of robot assisted rehabilitation based on visual feedback in post stroke pusher syndrome. J Korea Acad Ind Cooper Soc 2016;17:562–8. https://doi.org/10.5762/kais.2016.17.10.562
  173. Lee JT, Chon SC. Does the addition of visual feedback improve postural vertical training in the patients with pusher syndrome after stroke? J Korean Soc Phys Med 2017;12:33–42.
  174. Meneghetti CHZ, Basqueira C, Fioramonte C, Ferracini Júnior LC. Influência da fisioterapia aquática no controle de tronco na síndrome de pusher: estudo de caso. Fisioterapia e Pesquisa 2009;16:269–73. https://doi.org/10.1590/s1809-29502009000300014
  175. Mikołajewska E. Posterior pusher syndrome – case report. Cent Eur J Med 2012;7:354–7.
  176. Pardo V, Galen S. Treatment interventions for pusher syndrome: a case series. NeuroRehabilitation 2019;44:131–40. https://doi.org/10.3233/NRE-182549 doi: 10.3233/NRE-182549. [DOI] [PubMed]
  177. Scheets PL, Sahrmann SA, Norton BJ. Use of movement system diagnoses in the management of patients with neuromuscular conditions: a multiple-patient case report. Phys Ther 2007;87:654–69. https://doi.org/10.2522/ptj.20050349 doi: 10.2522/ptj.20050349. [DOI] [PubMed]
  178. Voos MC, Oliveira TP, Piemonte MEP. Diretrizes para avaliação e tratamento fisioterapêutico da Síndrome de Pusher: estudo de caso. Fisioterapia e Pesquisa 2011;18:323–8. https://doi.org/10.1590/s1809-29502011000400005
  179. Wang D, Lin J, Liu X. Effects of visual feedback and core stability training program on post-stroke Pusher syndrome: a pilot randomized controlled study. Chin J Rehab Med 2016;31:426–9.
  180. Yang YR, Chen YH, Chang HC, Chan RC, Wei SH, Wang RY. Effects of interactive visual feedback training on post-stroke pusher syndrome: a pilot randomized controlled study. Clin Rehabil 2015;29:987–93. https://doi.org/10.1177/0269215514564898 doi: 10.1177/0269215514564898. [DOI] [PubMed]
  181. Yun N, Joo MC, Kim SC, Kim MS. Robot-assisted gait training effectively improved lateropulsion in subacute stroke patients: a single-blinded randomized controlled trial. Eur J Phys Rehabil Med 2018;54:827–36. https://doi.org/10.23736/S1973-9087.18.05077-3 doi: 10.23736/S1973-9087.18.05077-3. [DOI] [PubMed]
  182. Babyar S, Santos T, Will-Lemos T, Mazin S, Edwards D, Reding M. Sinusoidal transcranial direct current versus galvanic vestibular stimulation for treatment of lateropulsion poststroke. J Stroke Cerebrovasc Dis 2018;27:3621–5. https://doi.org/10.1016/j.jstrokecerebrovasdis.2018.08.034 doi: 10.1016/j.jstrokecerebrovasdis.2018.08.034. [DOI] [PubMed]
  183. Krewer C, Rieß K, Bergmann J, Müller F, Jahn K, Koenig E. Immediate effectiveness of single-session therapeutic interventions in pusher behaviour. Gait Posture 2013;37:246–50. https://doi.org/10.1016/j.gaitpost.2012.07.014 doi: 10.1016/j.gaitpost.2012.07.014. [DOI] [PubMed]
  184. Nakamura J, Kita Y, Yuda T, Ikuno K, Okada Y, Shomoto K. Effects of galvanic vestibular stimulation combined with physical therapy on pusher behavior in stroke patients: a case series. NeuroRehabilitation 2014;35:31–7. https://doi.org/10.3233/NRE-141094 doi: 10.3233/NRE-141094. [DOI] [PubMed]
  185. Colombo R, Sterpi I, Mazzone A, Delconte C, Pisano F. Improving proprioceptive deficits after stroke through robot-assisted training of the upper limb: a pilot case report study. Neurocase 2016;22:191–200. https://doi.org/10.1080/13554794.2015.1109667 doi: 10.1080/13554794.2015.1109667. [DOI] [PubMed]
  186. Jamal K, Leplaideur S, Chochina L, Moulinet-Raillon A, Senal N, Bonan I. The long-lasting effects of repetitive neck muscle vibration on postural disturbances in standing position in chronic patients. Neurophysiol Clin 2017;47:341–2. https://doi.org/10.1016/j.neucli.2017.10.014
  187. Koo WR, Jang BH, Kim CR. Effects of anodal transcranial direct current stimulation on somatosensory recovery after stroke: a randomized controlled trial. Am J Phys Med Rehabil 2018;97:507–13. https://doi.org/10.1097/PHM.0000000000000910 doi: 10.1097/PHM.0000000000000910. [DOI] [PubMed]
  188. Fifer RC. Insular stroke causing unilateral auditory processing disorder: case report. J Am Acad Audiol 1993;4:364–9. [PubMed]
  189. Koohi N, Vickers D, Warren J, Werring D, Bamiou DE. Long-term use benefits of personal frequency-modulated systems for speech in noise perception in patients with stroke with auditory processing deficits: a non-randomised controlled trial study. BMJ Open 2017;7:e013003. https://doi.org/10.1136/bmjopen-2016-013003 doi: 10.1136/bmjopen-2016-013003. [DOI] [PMC free article] [PubMed]
  190. Papathanasiou I, Macfarlane S, Heron C. A case of verbal auditory agnosia: missing the word... missing the sound. Int J Lang Commun Disord 1998;33:214–7. https://doi.org/10.3109/13682829809179425 doi: 10.3109/13682829809179425. [DOI] [PubMed]
  191. Woolf C, Panton A, Rosen S, Best W, Marshall J. Therapy for auditory processing impairment in aphasia: an evaluation of two approaches. Aphasiology 2014;28:1481–505. https://doi.org/10.1080/02687038.2014.931921
  192. Zgaljardic D, Yancy S, Burton V, Masel B. Auditory agnosia and Post-Acute Brain Injury Rehabilitation (PABIR): a case report. J Head Trauma Rehabil 2013;28:E35–6.
  193. Fechtelpeter A, Göddenhenrich S, Huber W, Springer L. [Approaches to therapy of auditory agnosia]. Folia Phoniatr (Basel) 1990;42:83–97. [PubMed]
  194. Carey LM, Matyas TA, Oke LE. Sensory loss in stroke patients: effective training of tactile and proprioceptive discrimination. Arch Phys Med Rehabil 1993;74:602–11. https://doi.org/10.1016/0003-9993(93)90158-7 doi: 10.1016/0003-9993(93)90158-7. [DOI] [PubMed]
  195. Carey LM, Matyas TA. Training of somatosensory discrimination after stroke: facilitation of stimulus generalization. Am J Phys Med Rehabil 2005;84:428–42. https://doi.org/10.1097/01.phm.0000159971.12096.7f doi: 10.1097/01.phm.0000159971.12096.7f. [DOI] [PubMed]
  196. Hayashi R. Olfactory illusions and hallucinations after right temporal hemorrhage. Eur Neurol 2004;51:240–1. https://doi.org/10.1159/000078551 doi: 10.1159/000078551. [DOI] [PubMed]
  197. Oppenländer K, Utz KS, Reinhart S, Keller I, Kerkhoff G, Schaadt AK. Subliminal galvanic-vestibular stimulation recalibrates the distorted visual and tactile subjective vertical in right-sided stroke. Neuropsychologia 2015;74:178–83. https://doi.org/10.1016/j.neuropsychologia.2015.03.004 doi: 10.1016/j.neuropsychologia.2015.03.004. [DOI] [PubMed]
  198. Carey LM, Abbott DF, Lamp G, Puce A, Seitz RJ, Donnan GA. Same intervention-different reorganization: the impact of lesion location on training-facilitated somatosensory recovery after stroke. Neurorehabil Neural Repair 2016;30:988–1000. https://doi.org/10.1177/1545968316653836 doi: 10.1177/1545968316653836. [DOI] [PubMed]
  199. Enders LR, Hur P, Johnson MJ, Seo NJ. Remote vibrotactile noise improves light touch sensation in stroke survivors’ fingertips via stochastic resonance. J Neuroeng Rehabil 2013;10:105. https://doi.org/10.1186/1743-0003-10-105 doi: 10.1186/1743-0003-10-105. [DOI] [PMC free article] [PubMed]
  200. Fujimoto S, Kon N, Otaka Y, Yamaguchi T, Nakayama T, Kondo K, et al. Transcranial direct current stimulation over the primary and secondary somatosensory cortices transiently improves tactile spatial discrimination in stroke patients. Front Neurosci 2016;10:128. https://doi.org/10.3389/fnins.2016.00128 doi: 10.3389/fnins.2016.00128. [DOI] [PMC free article] [PubMed]
  201. Kim B, Bang D, Shin W. Effects of pressure sense perception training on unstable surface on somatosensory, balance and gait function in patients with stroke. J Korean Soc Phys Med 2015;10:19–27. https://doi.org/10.13066/kspm.2015.10.3.19
  202. Kitisomprayoonkul W. Poster 66 transcranial direct current stimulation improves hand sensation in acute stroke. Arch Phys Med Rehabil 2012;93:e33. https://doi.org/10.1016/j.apmr.2012.08.101
  203. Morioka S, Yagi F. Effects of perceptual learning exercises on standing balance using a hardness discrimination task in hemiplegic patients following stroke: a randomized controlled pilot trial. Clin Rehabil 2003;17:600–7. https://doi.org/10.1191/0269215503cr654oa doi: 10.1191/0269215503cr654oa. [DOI] [PubMed]
  204. Hazelton C, Thomson K, Todhunter-Brown A, Campbell P, Chung CS, Dorris L, et al. Interventions for perceptual disorders following stroke. Cochrane Database Syst Rev 2022;11:CD007039. https://doi.org/10.1002/14651858.CD007039.pub3 doi: 10.1002/14651858.CD007039.pub3. [DOI] [PMC free article] [PubMed]
  205. Higgins JPT, Green S. Cochrane Handbook for Systematic Reviews of Interventions (v5.1.0) [Updated March 2011]. Cochrane Collaboration; 2011. URL: https://handbook-5-1.cochrane.org/ (accessed 28 March 2022).
  206. Faltinsen E, Todorovac A, Hróbjartsson A, Gluud C, Kongerslev MT, Simonsen E, et al. Placebo, usual care and wait-list interventions for all mental health disorders. Cochrane Database Syst Rev 2019;1. https://doi.org/10.1002/14651858.MR000050 doi: 10.1002/14651858.MR000050.pub2. [DOI] [PMC free article] [PubMed]
  207. Kazdin AE. Research Design in Clinical Psychology. New York: Harper and Row; 1980.
  208. Brady MC, Godwin J, Kelly H, Enderby P, Elders A, Campbell P. Attention control comparisons with SLT for people with aphasia following stroke: methodological concerns raised following a systematic review. Clin Rehabil 2018;32:1383–95. https://doi.org/10.1177/0269215518780487 doi: 10.1177/0269215518780487. [DOI] [PubMed]
  209. Braunholtz DA, Edwards SJ, Lilford RJ. Are randomized clinical trials good for us (in the short term)? Evidence for a ‘trial effect’. J Clin Epidemiol 2001;54:217–24. https://doi.org/10.1016/s0895-4356(00)00305-x doi: 10.1016/s0895-4356(00)00305-x. [DOI] [PubMed]
  210. Mahoney FI, Barthel DW. Functional evaluation: the Barthel index. Md State Med J 1965;14:61–5. [PubMed]
  211. Keith RA, Granger CV, Hamilton BB, Sherwin FS. The functional independence measure: a new tool for rehabilitation. In Eisenberg MG and Grzesiak RC, editors. Advances in Clinical Rehabilitation. New York: Springer; 1987. [PubMed]
  212. Rankin J. Cerebral vascular accidents in patients over the age of 60 II. Prognosis. Scott Med J 1957;2:200–15. https://doi.org/10.1177/003693305700200504 doi: 10.1177/003693305700200504. [DOI] [PubMed]
  213. Katz S. Assessing self-maintenance: activities of daily living, mobility, and instruments of daily living. J Am Geriatr Soc 1983;31:721–7. doi: 10.1111/j.1532-5415.1983.tb03391.x. [DOI] [PubMed]
  214. Fisher AG. Development of a functional assessment that adjusts ability measures for task simplicity and rater leniency. In Wilson M, editor. Objective Measurement: Theory into Practice. Norwood: Ablex; 1994.
  215. Lankhorst G, Jelles F, Van Bennekom C. Rehabilitation Activities Profile: Manual and Description. Amsterdam: VU University Press; 1996.
  216. Holbrook M, Skilbeck CE. An activities index for use with stroke patients. Age Ageing 1983;12:166–70. https://doi.org/10.1093/ageing/12.2.166 doi: 10.1093/ageing/12.2.166. [DOI] [PubMed]
  217. Balestroni G, Bertolotti G. EuroQol-5D (EQ-5D): an instrument for measuring quality of life. Monaldi Arch Chest Dis 2012;78:155–9. https://doi.org/10.4081/monaldi.2012.121 doi: 10.4081/monaldi.2012.121. [DOI] [PubMed]
  218. Collen FM, Wade DT, Robb GF, Bradshaw CM. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud 1991;13:50–4. https://doi.org/10.3109/03790799109166684 doi: 10.3109/03790799109166684. [DOI] [PubMed]
  219. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand 1983;67:361–70. https://doi.org/10.1111/j.1600-0447.1983.tb09716.x doi: 10.1111/j.1600-0447.1983.tb09716.x. [DOI] [PubMed]
  220. Robinson BC. Validation of a caregiver strain index. J Gerontol 1983;38:344–8. https://doi.org/10.1093/geronj/38.3.344 doi: 10.1093/geronj/38.3.344. [DOI] [PubMed]
  221. Whiting S, Lincoln NB, Bhavnani G, Cockburn J. The Rivermead Perceptual Assessment Battery. Windsor: NFER-Nelson; 1985. doi: 10.1080/J003v03n03_18. [DOI] [PubMed]
  222. Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, et al. Cochrane Handbook for Systematic Reviews of Interventions Version 6.3 (Updated February 2022). 2022. URL: www.training.cochrane.org/handbook
  223. Higgins JP, Altman DG, Gotzsche PC, Jüni P, Moher D, Oxman AD, et al.; Cochrane Bias Methods Group. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 2011;343:d5928. http://dx.doi.org/10.1136/bmj.d5928 doi: 10.1136/bmj.d5928. [DOI] [PMC free article] [PubMed]
  224. Deeks JJ, Higgins JP, Altman DG. Chapter 10: Analysing data and undertaking meta-analyses. In Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 6.1 (Updated September 2020). Cochrane Collaboration; 2020. URL: www.training.cochrane.org/handbook
  225. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997;315:629–34. https://doi.org/10.1136/bmj.315.7109.629 doi: 10.1136/bmj.315.7109.629. [DOI] [PMC free article] [PubMed]
  226. Balshem H, Helfand M, Schunemann HJ, Oxman AD, Kunz R, Brozek J, et al. GRADE guidelines: 3. Rating the quality of evidence. J Clin Epidemiol 2011;64:401–6. https://doi.org/10.1016/j.jclinepi.2010.07.015 doi: 10.1016/j.jclinepi.2010.07.015. [DOI] [PubMed]
  227. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 2011;64:383–94. https://doi.org/10.1016/j.jclinepi.2010.04.026 doi: 10.1016/j.jclinepi.2010.04.026. [DOI] [PubMed]
  228. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 4. Rating the quality of evidence–study limitations (risk of bias). J Clin Epidemiol 2011;64:407–15. https://doi.org/10.1016/j.jclinepi.2010.07.017 doi: 10.1016/j.jclinepi.2010.07.017. [DOI] [PubMed]
  229. Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, et al. GRADE guidelines 6. Rating the quality of evidence–imprecision. J Clin Epidemiol 2011;64:1283–93. https://doi.org/10.1016/j.jclinepi.2011.01.012 doi: 10.1016/j.jclinepi.2011.01.012. [DOI] [PubMed]
  230. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al.; GRADE Working Group. GRADE guidelines: 7. Rating the quality of evidence–inconsistency. J Clin Epidemiol 2011;64:1294–302. http://dx.doi.org/10.1016/j.jclinepi.2011.03.017 doi: 10.1016/j.jclinepi.2011.03.017. [DOI] [PubMed]
  231. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, et al.; GRADE Working Group. GRADE guidelines: 8. Rating the quality of evidence – indirectness. J Clin Epidemiol 2011;64:1303–10. https://doi.org/10.1016/j.jclinepi.2011.04.014 doi: 10.1016/j.jclinepi.2011.04.014. [DOI] [PubMed]
  232. Guyatt GH, Oxman AD, Montori V, Vist G, Kunz R, Brozek J, et al. GRADE guidelines: 5. Rating the quality of evidence – publication bias. J Clin Epidemiol 2011;64:1277–82. https://doi.org/10.1016/j.jclinepi.2011.01.011 doi: 10.1016/j.jclinepi.2011.01.011. [DOI] [PubMed]
  233. Cochrane Editorial and Publishing Policy Resource. Peer Review Policy. Cochrane Collaboration; 2022. URL: https://documentation.cochrane.org/display/EPPR/Peer+review+policy (accessed 28 March 2022).
  234. De Bruyn N, Saenen L, Thijs L, Van Gils A, Ceulemans E, Essers B, et al. Sensorimotor vs. motor upper limb therapy for patients with motor and somatosensory deficits: a randomized controlled trial in the early rehabilitation phase after stroke. Front Neurol 2020;11, 597666. https://doi.org/10.3389/fneur.2020.597666 doi: 10.3389/fneur.2020.597666. [DOI] [PMC free article] [PubMed]
  235. Lee HC, Kuo FL, Lin YN, Liou TH, Lin JC, Huang SW. Effects of robot-assisted rehabilitation on hand function of people with stroke: a randomized, crossover-controlled, assessor-blinded study. Am J Occup Ther 2021;75:7501205020. https://doi.org/10.5014/ajot.2021.038232 doi: 10.5014/ajot.2021.038232. [DOI] [PubMed]
  236. Seim CE, Wolf SL, Starner TE. Wearable vibrotactile stimulation for upper extremity rehabilitation in chronic stroke: clinical feasibility trial using the VTS Glove. J Neuroeng Rehabil 2021;18(14). https://doi.org/10.1186/s12984-021-00813-7 doi: 10.1186/s12984-021-00813-7. [DOI] [PMC free article] [PubMed]
  237. Kang SH, Kim DK, Seo KM, Choi KN, Yoo JY, Sung SY, et al. A computerized visual perception rehabilitation programme with interactive computer interface using motion tracking technology – a randomized controlled, single-blinded, pilot clinical trial study. Clin Rehabil 2009;23:434–44. https://doi.org/10.1177/0269215508101732 doi: 10.1177/0269215508101732. [DOI] [PubMed]
  238. DRKS00021654. Effects of End-Effector Controlled Gait Training Compared to Balance Training Onpostural Stability, Walking Ability and Subjective Perception of Visual Verticality (SVV) in Non-ambulatory Patients with Left-Sided Neglect. 2020. URL: https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00021654 (accessed 27 March 2022).
  239. NCT02524015. Novel Treatment for Pusher Syndrome Using Physical Therapy. 2015. URL: https://clinicaltrials.gov/ct2/show/ NCT02524015 (accessed 27 March 2022).
  240. NCT03154138. Prismatic Adaptation for Rehabilitation of Postural Imbalance After Stroke (PEQUIE). 2017. URL: https://clinicaltrials.gov/ct2/show/ NCT03154138 (accessed 27 March 2022).
  241. NCT03888326. Robot and tDCS Based Proprioceptive Rehabilitation After Stroke (RoboStim). 2018. URL: https://clinicaltrials.gov/ct2/show/ NCT03888326 (accessed 27 March 2022).
  242. NCT03991390. Effectiveness of Balance Exercise Program for Stroke Patients With Pusher Syndrome. 2019. URL: https://clinicaltrials.gov/ct2/show/ NCT03991390 (accessed 27 March 2022).
  243. NCT04490655. Active Somatosensory Exercise for Chronic Stroke (ActSens). 2020. URL: https://clinicaltrials.gov/ct2/show/ NCT04490655 (accessed 27 March 2022).
  244. NCT04703218. Re-education of Olfactory Disorders after a Cerebral Vascular Accident in Adults 2021. URL: https://clinicaltrials.gov/ct2/show/ NCT04703218 (accessed 27 March 2022).
  245. NCT04818073. Determinants of the Effectiveness of Robot-assisted Hand Movement Training. 2021. URL: https://clinicaltrials.gov/ct2/show/ NCT04818073 (accessed 27 March 2022).
  246. NCT04911738. VIrtual Reality Glasses Use to Improve Lateropulsion and the Post-stroke Postural Vertical (VIRGIL). 2021. URL: https://clinicaltrials.gov/ct2/show/ NCT04911738 (accessed 27 March 2022).
  247. Chiu EC, Chi FC. Effect of home-based activities of daily living (ADL) on cognition and visual perception in patients with stroke: a randomized controlled pilot study. Am J Occup Ther 2020;74(1):7411515377p1. https://doi.org/10.5014/ajot.2020.74S1-PO3404
  248. Kim DH, Kim KH, Lee SM. The effects of virtual reality training with upper limb sensory exercise stimulation on the AROM of upper limb joints, function, and concentration in chronic stroke patients. Physikalische Medizin, Rehabilitationsmedizin, Kurortmedizin 2019;30:86–94. https://doi.org/10.1055/a-0917-4604
  249. Koval’chuk VV. [An influence of mexidol on the restoration of neurological deficit, increase of social adaptation and removal of neglect and push syndromes in stroke patients]. Zh Nevrol Psikhiatr Im S S Korsakova 2011;111:52–7. [PubMed]
  250. Leer WB. Block Design Training with Stroke Patients: A Study on the Effects of Cognitive Retraining on Improving Certain Activities of Daily Living Skills. Michigan: Michigan State University; 1984.
  251. Matz K, Teuschl Y, Eckhardt R, Herbst A, Dachenhausen A, Brainin M. Cognitive training in patients with first lacunar stroke – a randomized pilot trial for the prevention of post-stroke cognitive decline. Cerebrovasc Dis 2007;23:42.
  252. Muffel T, Shih PC, Kalloch B, Sehm B. P187 costs and benefits: complex effects of unilateral and bilateral tDCS over M1 on the kinematics of sensorimotor function in chronic stroke. Clin Neurophysiol 2020;abstract no. 15:e120–e1.
  253. Whiting P, Savovic J, Higgins JP, Caldwell DM, Reeves BC, Shea B, et al.; ROBIS group. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 2016;69:225–34. https://doi.org/10.1016/j.jclinepi.2015.06.005 doi: 10.1016/j.jclinepi.2015.06.005. [DOI] [PMC free article] [PubMed]
  254. Jenkins M. Evaluation of methodological search filters–a review. Health Info Libr J 2004;21:148–63. https://doi.org/10.1111/j.1471-1842.2004.00511.x doi: 10.1111/j.1471-1842.2004.00511.x. [DOI] [PubMed]
  255. Lefebvre C, Glanville J, Beale S, Boachie C, Duffy S, Fraser C, et al. Assessing the performance of methodological search filters to improve the efficiency of evidence information retrieval: five literature reviews and a qualitative study. Health Technol Assess 2017;21:1–148. https://doi.org/10.3310/hta21690 doi: 10.3310/hta21690. [DOI] [PMC free article] [PubMed]
  256. Pollock A, Hazelton C, Henderson CA, Angilley J, Dhillon B, Langhorne P, et al. Interventions for disorders of eye movement in patients with stroke. Cochrane Database Syst Rev 2011:CD008389. doi: 10.1002/14651858.CD008389.pub2. [DOI] [PubMed]
  257. West C, Bowen A, Hesketh A, Vail A. Interventions for motor apraxia following stroke. Cochrane Database Syst Rev 2008;2008:CD004132. https://doi.org/10.1002/14651858.CD004132.pub2 doi: 10.1002/14651858.CD004132.pub2. [DOI] [PMC free article] [PubMed]
  258. Hoffmann T, Bennett S, Koh CL, McKenna KT. Occupational therapy for cognitive impairment in stroke patients. Cochrane Database Syst Rev 2010;2010:CD006430. https://doi.org/10.1002/14651858.CD006430.pub2 doi: 10.1002/14651858.CD006430.pub2. [DOI] [PMC free article] [PubMed]
  259. Hanna KL, Hepworth LR, Rowe FJ. The treatment methods for post-stroke visual impairment: a systematic review. Brain Behav 2017;7:e00682. https://doi.org/10.1002/brb3.682 doi: 10.1002/brb3.682. [DOI] [PMC free article] [PubMed]
  260. Serrada I, Hordacre B, Hillier SL. Does sensory retraining improve sensation and sensorimotor function following stroke: a systematic review and meta-analysis. Front Neurosci 2019;13:402. https://doi.org/10.3389/fnins.2019.00402 doi: 10.3389/fnins.2019.00402. [DOI] [PMC free article] [PubMed]
  261. Thanaya SAP, Mardhika PE. Therapeutic approaches for pusher syndrome after a stroke: a literature review. Intisari Sains Medis 2019;10. https://doi.org/10.15562/ism.v10i2.507
  262. Cicerone KD, Goldin Y, Ganci K, Rosenbaum A, Wethe JV, Langenbahn DM, et al. Evidence-based cognitive rehabilitation: systematic review of the literature from 2009 through 2014. Arch Phys Med Rehabil 2019;100:1515–33. https://doi.org/10.1016/j.apmr.2019.02.011 doi: 10.1016/j.apmr.2019.02.011. [DOI] [PubMed]
  263. Hausler R, Levine RA. Auditory dysfunction in stroke. Acta Otolaryngol 2000;120:689–703. https://doi.org/10.1080/000164800750000207 doi: 10.1080/000164800750000207. [DOI] [PubMed]
  264. James Lind Alliance. Life after Stroke Top 10. UK; 2011. URL: www.jla.nihr.ac.uk/priority-setting-partnerships/life-after-stroke/top-10-priorities/ (accessed 29 March 2022).
  265. Rudberg AS, Berge E, Laska AC, Jutterstrom S, Nasman P, Sunnerhagen KS, Lundström E. Stroke survivors’ priorities for research related to life after stroke. Top Stroke Rehabil 2021;28:153–8. https://doi.org/10.1080/10749357.2020.1789829 doi: 10.1080/10749357.2020.1789829. [DOI] [PubMed]
  266. Sacco RL, Sandercock P, Endres M, Feigin V, Pandian J, Shinohara Y, Spence JD. Review and prioritization of stroke research recommendations to address the mission of the World Stroke Organization: a call to action from the WSO Research Committee. Int J Stroke 2015;10:4–9. https://doi.org/10.1111/ijs.12625 doi: 10.1111/ijs.12625. [DOI] [PubMed]
  267. James Lind Alliance. Mild to Moderate Hearing Loss Top 10. UK: James Lind Alliance; 2022. URL: www.jla.nihr.ac.uk/priority-setting-partnerships/mild-to-moderate-hearing-loss/top-10-priorities/ (accessed 28 March 2022).
  268. Alliance JL. Smell and Taste Disorders. UK: James Lind Alliance; 2022. URL: www.jla.nihr.ac.uk/priority-setting-partnerships/smell-and-taste-disorders/ (accessed 28 March 2022).
  269. Loudon K, Treweek S, Sullivan F, Donnan P, Thorpe KE, Zwarenstein M. The PRECIS-2 tool: designing trials that are fit for purpose. BMJ 2015;350:h2147. https://doi.org/10.1136/bmj.h2147 doi: 10.1136/bmj.h2147. [DOI] [PubMed]
  270. Rowe FJ, Hepworth LR, Kirkham JJ. Development of core outcome sets and core outcome measures for central visual impairment, visual field loss and ocular motility disorders due to stroke: a Delphi and consensus study. BMJ Open 2022;12:e056792. https://doi.org/10.1136/bmjopen-2021-056792 doi: 10.1136/bmjopen-2021-056792. [DOI] [PMC free article] [PubMed]
  271. Hoddinott P, Pollock A, O’Cathain A, Boyer I, Taylor J, MacDonald C, et al. How to incorporate patient and public perspectives into the design and conduct of research. F1000Res 2018;7:752. http://dx.doi.org/10.12688/f1000research.15162.1 doi: 10.12688/f1000research.15162.1. [DOI] [PMC free article] [PubMed]
  272. Carcel C, Harris K, Peters SAE, Sandset EC, Balicki G, Bushnell CD, et al. Representation of women in stroke clinical trials: a review of 281 trials involving more than 500,000 participants. Neurology 2021;97:e1768–74. https://doi.org/10.1212/WNL.0000000000012767 doi: 10.1212/WNL.0000000000012767. [DOI] [PubMed]
  273. Silver JK, Flores LE, Mondriguez Gonzalez A, Frontera WR. An analysis of the inclusion of women, older individuals, and racial/ethnic minorities in rehabilitation clinical trials. Am J Phys Med Rehabil 2021;100:546–54. https://doi.org/10.1097/PHM.0000000000001750 doi: 10.1097/PHM.0000000000001750. [DOI] [PubMed]
  274. Nelson MLA, McKellar KA, Yi J, Kelloway L, Munce S, Cott C, et al. Stroke rehabilitation evidence and comorbidity: a systematic scoping review of randomized controlled trials. Top Stroke Rehabil 2017;24:374–80. https://doi.org/10.1080/10749357.2017.1282412 doi: 10.1080/10749357.2017.1282412. [DOI] [PubMed]
  275. Brady MC, Fredrick A, Williams B. People with aphasia: capacity to consent, research participation and intervention inequalities. Int J Stroke 2013;8:193–6. http://dx.doi.org/10.1111/j.1747-4949.2012.00900.x doi: 10.1111/j.1747-4949.2012.00900.x. [DOI] [PubMed]
  276. Bernhardt J, Hayward KS, Dancause N, Lannin NA, Ward NS, Nudo RJ, et al. A stroke recovery trial development framework: consensus-based core recommendations from the second stroke recovery and rehabilitation roundtable. Neurorehabil Neural Repair 2019;33:959–69. https://doi.org/10.1177/1545968319888642 doi: 10.1177/1545968319888642. [DOI] [PubMed]
  277. Cahill LS, Carey LM, Mak-Yuen Y, McCluskey A, Neilson C, O’Connor DA, Lannin NA. Factors influencing allied health professionals’ implementation of upper limb sensory rehabilitation for stroke survivors: a qualitative study to inform knowledge translation. BMJ Open 2021;11:e042879. https://doi.org/10.1136/bmjopen-2020-042879 doi: 10.1136/bmjopen-2020-042879. [DOI] [PMC free article] [PubMed]
  278. Ryan C, Hazelton C, Lawrence M, Kidd L. UK Stroke Supplement: 212: What are the unmet needs of stroke survivors with visual impairment? A qualitative exploration and prioritisation project. Int J Stroke 2021;16:9–37. https://doi.org/10.1177/17474930211059996
  279. Rowe FJ, Hepworth LR, Howard C, Hanna KL, Helliwell B. Developing a stroke-vision care pathway: a consensus study. Disabil Rehabil 2022;44:487–95. https://doi.org/10.1080/09638288.2020.1768302 doi: 10.1080/09638288.2020.1768302. [DOI] [PubMed]
  280. Scottish Government. A Progressive Stroke Pathway. Scotland: Scottish Government; 2022. URL: www.gov.scot/binaries/content/documents/govscot/publications/independent-report/2022/03/progressive-stroke-pathway/documents/progressive-stroke-pathway/progressive-stroke-pathway/govscot%3Adocument/progressive-stroke-pathway.pdf (accessed 30 March 2022).
  281. Ferriero DM, Fullerton HJ, Bernard TJ, Billinghurst L, Daniels SR, DeBaun MR, et al.; American Heart Association Stroke Council and Council on Cardiovascular and Stroke Nursing. Management of stroke in neonates and children: a scientific statement from the American Heart Association/American Stroke Association. Stroke 2019;50:e51–96. https://doi.org/10.1161/STR.0000000000000183 doi: 10.1161/STR.0000000000000183. [DOI] [PubMed]
  282. Anderson V, Darling S, Mackay M, Monagle P, Greenham M, Cooper A, et al. Cognitive resilience following paediatric stroke: biological and environmental predictors. Eur J Paediatr Neurol 2020;25:52–8. https://doi.org/10.1016/j.ejpn.2019.11.011 doi: 10.1016/j.ejpn.2019.11.011. [DOI] [PubMed]
  283. Anderson V, Spencer-Smith M, Wood A. Do children really recover better? Neurobehavioural plasticity after early brain insult. Brain 2011;134:2197–221. https://doi.org/10.1093/brain/awr103 doi: 10.1093/brain/awr103. [DOI] [PubMed]
  284. Skivington K, Matthews L, Simpson SA, Craig P, Baird J, Blazeby JM, et al. A new framework for developing and evaluating complex interventions: update of Medical Research Council guidance. BMJ 2021;374:n2061. https://doi.org/10.1136/bmj.n2061 doi: 10.1136/bmj.n2061. [DOI] [PMC free article] [PubMed]
  285. Cheyne J. Search strategy for retrieval of references on stroke healthcare in MEDLINE Ovid, [text]. In University of Edinburgh. College of Medicine and Veterinary Medicine. Cochrane Stroke Group; 2020. https://doi.org/10.7488/ds/2862
  286. Jo K, Yu J, Jung J. Effects of virtual reality-based rehabilitation on upper extremity function and visual perception in stroke patients: a randomized control trial. J Phys Ther Sci 2012;24:1205–8. https://doi.org/10.1589/jpts.24.1205

RESOURCES