Abstract
Although in humans, the brain fails to heal after an injury, young zebrafish are able to restore tissue structural integrity in less than 24 h, thanks to the mechanical action of microglia.
Article: El-Daher F, Enos SJ, Drake LK, Wehner D, Westphal M, Porter NJ, Becker CG, Becker T (2024 Oct 17) Microglia are essential for tissue contraction in wound closure after brain injury in zebrafish larvae. Life Sci Alliance 8(1): e202403052. doi: https://doi.org/10.26508/lsa.202403052. PMID: 39419547.
Note from the authors:
In this correction, we have updated the citations and reference list in the Materials and Methods section to rectify inaccuracies in the original publication. Specifically, we corrected the author names and publication years for several references to ensure proper attribution and accuracy. These changes do not affect the results or conclusions of the study but are made to maintain the integrity and reliability of the scientific record.
Materials and Methods
Fish husbandry
All zebrafish lines were kept and raised under standard conditions (Westerfield, 2000) and all experiments were approved by the UK Home Office (project license no.: PP8160052) or according to German animal welfare regulations with the permission of the Free State of Saxony (project license no.: TVV36/2021). Following the guidelines of the 3Rs, we only used larvae aged up to 5 dpf. For experimental analyses, we used larvae of either sex of the following available zebrafish lines: Tg(Xla.Tubb:DsRed)zf148 (Peri & Nüsslein-Volhard, 2008); Tg(betaactin:utrophin-mCherry)e119 (Compagnon et al, 2014); Tg(h2a.F/Z:GFP)kca6 (Pauls et al, 2001) (referred to as Tg(h2a:GFP)); Tg(mpeg1.1:GFP)gl22 (Ellett et al, 2011); Tg(mpeg1.1:mCherry)gl23 (Ellett et al, 2011); Tg(irf8)st95 (Shiau et al, 2015); Tg(elavl3:MA-mKate2)mps1 (Tsata et al, 2021). The Tg(her4.3:GFP-F)mps9 transgenic zebrafish line has been previously described by Kolb et al (2023) and was established using the DNA constructs and methodology described below. If necessary, larvae were treated with 100 M Nphenylthiourea (PTU) to inhibit melanogenesis. All chemicals were supplied by Sigma-Aldrich unless otherwise stated.
Generation of Tg(her4.3:GFP-F) transgenic fish
To create the donor plasmid for generation of her4.3:GFP-F transgenic zebrafish, the sequence coding for the membrane-localised GFP (EGFP fused to farnesylation signal from c-HA-Ras) was amplified from the pEGFP-F vector (Clonetech) using oligos 5′-TTATTTATCGATCCACCATGGTGAGCAAGGGC-3′ and 5′-TTTATTATCGATTCAGGAGAGCACACACTTGCAGCT-3′ and cloned downstream of the her4.3 (previously known as her4.1) zebrafish promoter (Yeo et al, 2007). Transgenic fish were established by injection of 40 pg of the donor plasmid together with mRNA of the Tol2 transposase into one-cell embryos (Suster et al, 2009).
gRNA injections
The gRNAs were injected into the yolk at the one-cell stage of development. The injection mix was prepared on the morning of injections. The mix consisted of 1 liter Cas9 protein (M0369M; BioLabs), 1 liter Fast Green FCF dye (235345-9; Sigma-Aldrich), 1 liter 250 ng/liter SygRNA-tracr (TRACRRNA05N; Sigma-Aldrich), 1 liter gRNA, and 1 liter nuclease-free water. When two gRNAs were co-injected, the nuclease-free water was substituted with the second gRNA. After mixing gRNAs and tracr (and water if using), the mixture was heated to 95 degrees for 5 min and then kept on ice for 20 min. After this, the Cas9 and dye are added, and the mixture is again heated to 27 degrees for 10 min. For every experiment, two injection mixtures were made, one with the gRNA of interest and one with a control gRNA (5′-TTACCTCAGTTACAATTTAT-3′). lcp1 was targeted with a gRNA (5′-GAACCCGGUACCCCGGCAGA-3′) as previously published (Keatinge et al, 2021).
References
- Arenzana FJ, Santos-Ledo A, Porteros A, Aijón J, Velasco A, Lara JM, Arévalo R (2011) Characterisation of neuronal and glial populations of the visual system during zebrafish lifespan. Int J Dev Neurosci 29: 441–449. 10.1016/j.ijdevneu.2011.02.008 [DOI] [PubMed] [Google Scholar]
- Ayata P, Schaefer A (2020) Innate sensing of mechanical properties of brain tissue by microglia. Curr Opin Immunol 62: 123–130. 10.1016/j.coi.2020.01.003 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baraban M, Gordillo Pi C, Bonnet I, Gilles JF, Lejeune C, Cabrera M, Tep F, Breau MA (2023) Actomyosin contractility in olfactory placode neurons opens the skin epithelium to form the zebrafish nostril. Dev Cell 58: 361–375.e5. 10.1016/j.devcel.2023.02.001 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker T, Becker CG (2001) Regenerating descending axons preferentially reroute to the gray matter in the presence of a general macrophage/microglial reaction caudal to a spinal transection in adult zebrafish. J Comp Neurol 433: 131–147. 10.1002/cne.1131 [DOI] [PubMed] [Google Scholar]
- Bollmann L, Koser DE, Shahapure R, Gautier HOB, Holzapfel GA, Scarcelli G, Gather MC, Ulbricht E, Franze K (2015) Microglia mechanics: Immune activation alters traction forces and durotaxis. Front Cell Neurosci 9: 363. 10.3389/fncel.2015.00363 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brennan FH, Li Y, Wang C, Ma A, Guo Q, Li Y, Pukos N, Campbell WA, Witcher KG, Guan Z, et al. (2022) Microglia coordinate cellular interactions during spinal cord repair in mice. Nat Commun 13: 4096. 10.1038/s41467-022-31797-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chia K, Mazzolini J, Mione M, Sieger D (2018) Tumor initiating cells induce Cxcr4-mediated infiltration of pro-tumoral macrophages into the brain. Elife 7: e31918. 10.7554/eLife.31918 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Choi HMT, Schwarzkopf M, Fornace ME, Acharya A, Artavanis G, Stegmaier J, Cunha A, Pierce NA (2018) Third-generation in situ hybridization chain reaction: Multiplexed, quantitative, sensitive, versatile, robust. Development 145: dev165753. 10.1242/dev.165753 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole JH, Jolly A, de Simoni S, Bourke N, Patel MC, Scott G, Sharp DJ (2018) Spatial patterns of progressive brain volume loss after moderate-severe traumatic brain injury. Brain 141: 822–836. 10.1093/brain/awx354 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Compagnon J, Barone V, Rajshekar S, Kottmeier R, Pranjic-Ferscha K, Behrndt M, Heisenberg CP (2014) The notochord breaks bilateral symmetry by controlling cell shapes in the zebrafish laterality organ. Dev Cell 31: 774–783. 10.1016/j.devcel.2014.11.003 [DOI] [PubMed] [Google Scholar]
- Cooper SR, Emond MR, Duy PQ, Liebau BG, Wolman MA, Jontes JD (2015) Protocadherins control the modular assembly of neuronal columns in the zebrafish optic tectum. J Cell Biol 211: 807–814. 10.1083/jcb.201507108 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crilly S, Njegic A, Laurie SE, Fotiou E, Hudson G, Barrington J, Webb K, Young HL, Badrock AP, Hurlstone A, et al. (2018) Using zebrafish larval models to study brain injury, locomotor and neuroinflammatory outcomes following intracerebral haemorrhage. F1000Res 7: 1617. 10.12688/f1000research.16473.2 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM, et al. (2019) Estimating the global incidence of traumatic brain injury. J Neurosurg 130: 1080–1097. 10.3171/2017.10.JNS17352 [DOI] [PubMed] [Google Scholar]
- Dieterich P, Klages R, Preuss R, Schwab A (2008) Anomalous dynamics of cell migration. Proc Natl Acad Sci U S A 105: 459–463. 10.1073/pnas.0707603105 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) Mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117: 49–56. 10.1182/blood-2010-10-314120 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gao J, Nakamura F (2022) Actin-associated proteins and small molecules targeting the actin cytoskeleton. Int J Mol Sci 23: 2118. 10.3390/ijms23042118 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ghaffarizadeh A, Heiland R, Friedman SH, Mumenthaler SM, Macklin P (2018) PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput Biol 14: e1005991. 10.1371/journal.pcbi.1005991 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gorelik R, Gautreau A (2014) Quantitative and unbiased analysis of directional persistence in cell migration. Nat Protoc 9: 1931–1943. 10.1038/nprot.2014.131 [DOI] [PubMed] [Google Scholar]
- Grupp L, Wolburg H, Mack AF (2010) Astroglial structures in the zebrafish brain. J Comp Neurol 518: 4277–4287. 10.1002/cne.22481 [DOI] [PubMed] [Google Scholar]
- Guan B, Anderson DB, Chen L, Feng S, Zhou H (2023) Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: A systematic analysis for the global burden of disease study 2019. BMJ Open 13: e075049. 10.1136/bmjopen-2023-075049 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hellal F, Hurtado A, Ruschel J, Flynn KC, Laskowski CJ, Umlauf M, Kapitein LC, Strikis D, Lemmon V, Bixby J, et al. (2011) Microtubule stabilization reduces scarring and causes axon regeneration after spinal cord injury. Science 331: 928–931. 10.1126/science.1201148 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog C, Pons Garcia L, Keatinge M, Greenald D, Moritz C, Peri F, Herrgen L (2019) Rapid clearance of cellular debris by microglia limits secondary neuronal cell death after brain injury in vivo. Development 146: dev174698. 10.1242/dev.174698 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ibrahim S, Hu W, Wang X, Gao X, He C, Chen J (2016) Traumatic brain injury causes aberrant migration of adult-born neurons in the Hippocampus. Sci Rep 6: 21793. 10.1038/srep21793 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jurisch-Yaksi N, Yaksi E, Kizil C (2020) Radial glia in the zebrafish brain: Functional, structural, and physiological comparison with the mammalian glia. Glia 68: 2451–2470. 10.1002/glia.23849 [DOI] [PubMed] [Google Scholar]
- Keatinge M, Tsarouchas TM, Munir T, Porter NJ, Larraz J, Gianni D, Tsai HH, Becker CG, Lyons DA, Becker T (2021) CRISPR gRNA phenotypic screening in zebrafish reveals pro-regenerative genes in spinal cord injury. PLoS Genet 17: e1009515. 10.1371/journal.pgen.1009515 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolb J, Tsata V, John N, Kim K, Möckel C, Rosso G, Kurbel V, Parmar A, Sharma G, Karandasheva K, et al. (2023) Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nat Commun 14: 6814. 10.1038/s41467-023-42339-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lalancette-Hebert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27: 2596–2605. 10.1523/JNEUROSCI.5360-06.2007 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linehan JB, Lucas Zepeda J, Mitchell TA, LeClair EE (2022) Follow that cell: Leukocyte migration in l-plastin mutant zebrafish. Cytoskeleton 79: 26–37. 10.1002/cm.21717 [DOI] [PubMed] [Google Scholar]
- Liu C, Wu C, Yang Q, Gao J, Li L, Yang D, Luo L (2016) Macrophages mediate the repair of brain vascular rupture through direct physical adhesion and mechanical traction. Immunity 44: 1162–1176. 10.1016/j.immuni.2016.03.008 [DOI] [PubMed] [Google Scholar]
- Luisier F, Vonesch C, Blu T, Unser M (2010) Fast interscale wavelet denoising of Poisson-corrupted images. Signal Process 90: 415–427. 10.1016/j.sigpro.2009.07.009 [DOI] [Google Scholar]
- Mao Y, Tournier AL, Hoppe A, Kester L, Thompson BJ, Tapon N (2013) Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J 32: 2790–2803. 10.1038/emboj.2013.197 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marz M, Schmidt R, Rastegar S, Strahle U (2011) Regenerative response following stab injury in the adult zebrafish telencephalon. Dev Dyn 240: 2221–2231. 10.1002/dvdy.22710 [DOI] [PubMed] [Google Scholar]
- Mazzolini J, Le Clerc S, Morisse G, Coulonges C, Kuil LE, van Ham TJ, Zagury JF, Sieger D (2020) Gene expression profiling reveals a conserved microglia signature in larval zebrafish. Glia 68: 298–315. 10.1002/glia.23717 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meijering E, Dzyubachyk O, Smal I (2012) Methods for cell and particle tracking. Methods Enzymol 504: 183–200. 10.1016/B978-0-12-391857-4.00009-4 [DOI] [PubMed] [Google Scholar]
- Ollion J, Cochennec J, Loll F, Escude C, Boudier T (2013) Tango: A generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29: 1840–1841. 10.1093/bioinformatics/btt276 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parslow A, Cardona A, Bryson-Richardson RJ (2014) Sample drift correction following 4d confocal time-lapse imaging. J Vis Exp 12: 51086. 10.3791/51086 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pauls S, Geldmacher-Voss B, Campos-Ortega JA (2001) A zebrafish histone variant H2A.F/Z and a transgenic H2A.F/Z:GFP fusion protein for in vivo studies of embryonic development. Dev Genes Evol 211: 603–610. 10.1007/s00427-001-0196-x [DOI] [PubMed] [Google Scholar]
- Peri F, Nüsslein-Volhard C (2008) Live imaging of neuronal degradation by microglia reveals a role for v0-ATPase a1 in phagosomal fusion in vivo. Cell 133: 916–927. 10.1016/j.cell.2008.04.037 [DOI] [PubMed] [Google Scholar]
- Rovira M, Miserocchi M, Montanari A, Hammou L, Chomette L, Pozo J, Imbault V, Bisteau X, Wittamer V (2023) Zebrafish galectin 3 binding protein is the target antigen of the microglial 4c4 monoclonal antibody. Dev Dyn 252: 400–414. 10.1002/dvdy.549 [DOI] [PubMed] [Google Scholar]
- Ruschel J, Hellal F, Flynn KC, Dupraz S, Elliott DA, Tedeschi A, Bates M, Sliwinski C, Brook G, Dobrindt K, et al. (2015) Axonal regeneration. Systemic administration of epothilone B promotes axon regeneration after spinal cord injury. Science 348: 347–352. 10.1126/science.aaa2958 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sage D, Donati L, Soulez F, Fortun D, Schmit G, Seitz A, Guiet R, Vonesch C, Unser M (2017) DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods 115: 28–41. 10.1016/j.ymeth.2016.12.015 [DOI] [PubMed] [Google Scholar]
- Sage D, Unser M (2001) Easy Java programming for teaching image processing. In Proceedings of the 2001 IEEE International Conference on Image Processing (ICIP’01), Vol. 3, pp 298–301. Thessaloniki: IEEE. 10.1109/ICIP.2001.958110 [DOI] [Google Scholar]
- Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, et al. (2012) Fiji: An open-source platform for biological-image analysis. Nat Methods 9: 676–682. 10.1038/nmeth.2019 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shiau CE, Kaufman Z, Meireles AM, Talbot WS (2015) Differential requirement for irf8 in formation of embryonic and adult macrophages in zebrafish. PLoS One 10: e0117513. 10.1371/journal.pone.0117513 [DOI] [PMC free article] [PubMed] [Google Scholar]
- So WY, Johnson B, Gordon PB, Bishop KS, Gong H, Burr HA, Staunton JR, Handler C, Sood R, Scarcelli G, et al. (2024) Macrophage mediated mesoscale brain mechanical homeostasis mechanically imaged via optical tweezers and brillouin microscopy in vivo. BioRxiv. 10.1101/2023.12.27.573380 (Preprint posted March 06, 2024). [DOI] [Google Scholar]
- Stachowiak MR, O’Shaughnessy B (2009) Recoil after severing reveals stress fiber contraction mechanisms. Biophys J 97: 462–471. 10.1016/j.bpj.2009.04.051 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinwachs J, Metzner C, Skodzek K, Lang N, Thievessen I, Mark C, Munster S, Aifantis KE, Fabry B (2016) Three-dimensional force microscopy of cells in biopolymer networks. Nat Methods 13: 171–176. 10.1038/nmeth.3685 [DOI] [PubMed] [Google Scholar]
- Suster ML, Kikuta H, Urasaki A, Asakawa K, Kawakami K (2009) Transgenesis in zebrafish with the Tol2 transposon system. Methods Mol Biol 561: 41–63. 10.1007/978-1-60327-019-9_3 [DOI] [PubMed] [Google Scholar]
- Todd BP, Chimenti MS, Luo Z, Ferguson PJ, Bassuk AG, Newell EA (2021) Traumatic brain injury results in unique microglial and astrocyte transcriptomes enriched for type i interferon response. J Neuroinflammation 18: 151. 10.1186/s12974-02102197-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsarouchas TM, Wehner D, Cavone L, Munir T, Keatinge M, Lambertus M, Underhill A, Barrett T, Kassapis E, Ogryzko N, et al. (2018) Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration. Nat Commun 9: 4670. 10.1038/s41467018-07036-w [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsata V, Mollmert S, Schweitzer C, Kolb J, Mockel C, Bohm B, Rosso G, Lange C, Lesche M, Hammer J, et al. (2021) A switch in pdgfrb+ cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Dev Cell 56: 509–524.e9. 10.1016/j.devcel.2020.12.009 [DOI] [PubMed] [Google Scholar]
- Van Audenhove I, Denert M, Boucherie C, Pieters L, Cornelissen M, Gettemans J (2016) Fascin rigidity and l-plastin flexibility cooperate in cancer cell invadopodia and filopodia. J Biol Chem 291: 9148–9160. 10.1074/jbc.M115.706937 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vandestadt C, Vanwalleghem GC, Khabooshan MA, Douek AM, Castillo HA, Li M, Schulze K, Don E, Stamatis SA, Ratnadiwakara M, et al. (2021) RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 56: 2364–2380.e8. 10.1016/j.devcel.2021.07.021 [DOI] [PubMed] [Google Scholar]
- Var SR, Byrd-Jacobs CA (2020) Role of macrophages and microglia in zebrafish regeneration. Int J Mol Sci 21: 4768. 10.3390/ijms21134768 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Várkuti BH, Képiró Mlós, Horváth IÁ, Végner L, Ráti S, Zsigmond Á, Hegyi G, Lenkei Z, Varga M, Málnási-Csizmadia A (2016) A highly soluble, non-phototoxic, non-fluorescent blebbistatin derivative. Sci Rep 6: 26141. 10.1038/srep26141 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ventura G, Amiri A, Thiagarajan R, Tolonen M, Doostmohammadi A, Sedzinski J (2022) Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo. Nat Commun 13: 6423. 10.1038/s41467-022-34165-0 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33: 12870–12886. 10.1523/JNEUROSCI.2121-13.2013 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Westerfield M (2000) A Guide for the Laboratory Use of Zebrafish (Danio rerio). In The Zebrafish Book. Eugene: University of Oregon Press. [Google Scholar]
- Yeo SY, Kim MJ, Kim HS, Huh TL, Chitnis AB (2007) Fluorescent protein expression driven by her4 regulatory elements reveals the spatiotemporal pattern of Notch signaling in the nervous system of zebrafish embryos. Dev Biol 301: 555–567. 10.1016/j.ydbio.2006.10.020 [DOI] [PubMed] [Google Scholar]
- Zambusi A, Ninkovic J (2020) Regeneration of the central nervous system-principles from brain regeneration in adult zebrafish. World J Stem Cells 12: 8–24. 10.4252/wjsc.v12.i1.8 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zambusi A, Novoselc KT, Hutten S, Kalpazidou S, Koupourtidou C, Schieweck R, Aschenbroich S, Silva L, Yazgili AS, van Bebber F, et al. (2022) TDP-43 condensates and lipid droplets regulate the reactivity of microglia and regeneration after traumatic brain injury. Nat Neurosci 25: 1608–1625. 10.1038/s41593-022-01199-y [DOI] [PubMed] [Google Scholar]
- Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, Zachariou V, Guo L, Zhang B, He X, et al. (2020) Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci 23: 337–350. 10.1038/s41593-020-0597-7 [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zou D, Hu W, Qin J, Wei Z, Wang D, Li L (2021) Rapid orderly migration of neutrophils after traumatic brain injury depends on MMP9/13. Biochem Biophys Res Commun 579: 161–167. 10.1016/j.bbrc.2021.09.044 [DOI] [PubMed] [Google Scholar]
- Zulazmi NA, Arulsamy A, Ali I, Zainal Abidin SA, Othman I, Shaikh MF (2021) The utilization of small non-mammals in traumatic brain injury research: A systematic review. CNS Neurosci Ther 27: 381–402. 10.1111/cns.13590 [DOI] [PMC free article] [PubMed] [Google Scholar]