Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Apr 15;500(Pt 2):319–329. doi: 10.1113/jphysiol.1997.sp022023

Stimulation of pulmonary C fibres by lactic acid in rats: contributions of H+ and lactate ions.

J L Hong 1, K Kwong 1, L Y Lee 1
PMCID: PMC1159386  PMID: 9147320

Abstract

1. The contributions of H+ and lactate ions to the stimulation of single pulmonary C fibres by lactic acid were examined in anaesthetized and artificially ventilated rats. 2. Lactic acid injected into the right atrium caused a transient decrease in arterial blood pH (pHa) and a short but intense burst of afferent activities in pulmonary C fibres, whereas sodium lactate had no effect. The fibre activity usually reached a peak within 1-1.5 s, with an onset latency of < 1 s, and returned to the baseline in 5 s. 3. The injection of hydrochloric acid at the same pH as that of lactic acid did not significantly decrease pHa, nor did it stimulate any C fibres studied. 4. Formic acid has a pKa value (the negative logarithm of the dissociation constant) almost identical to that of lactic acid; thus, its injection decreased pHa to the same degree as did the injection of lactic acid. However, the response of C fibres to lactic acid was 134% stronger than that to formic acid. 5. We conclude that H+ is primarily responsible for the activation of pulmonary C fibres by lactic acid, probably through a direct effect of H+ on these afferent endings. The lactate ion, by itself, does not activate C fibres, but it seems to potentiate the stimulatory effect of H+ on these afferents.

Full text

PDF
324

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allott C. P., Evans D. P., Marshall P. W. A model of irritant-induced bronchoconstriction in the spontaneously breathing guinea-pig. Br J Pharmacol. 1980;71(1):165–168. doi: 10.1111/j.1476-5381.1980.tb10921.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Coleridge H. M., Coleridge J. C. Pulmonary reflexes: neural mechanisms of pulmonary defense. Annu Rev Physiol. 1994;56:69–91. doi: 10.1146/annurev.ph.56.030194.000441. [DOI] [PubMed] [Google Scholar]
  3. DAWES G. S., COMROE J. H., Jr Chemoreflexes from the heart and lungs. Physiol Rev. 1954 Apr;34(2):167–201. doi: 10.1152/physrev.1954.34.2.167. [DOI] [PubMed] [Google Scholar]
  4. Forsberg K., Karlsson J. A., Theodorsson E., Lundberg J. M., Persson C. G. Cough and bronchoconstriction mediated by capsaicin-sensitive sensory neurons in the guinea-pig. Pulm Pharmacol. 1988;1(1):33–39. doi: 10.1016/0952-0600(88)90008-7. [DOI] [PubMed] [Google Scholar]
  5. Fox A. J., Urban L., Barnes P. J., Dray A. Effects of capsazepine against capsaicin- and proton-evoked excitation of single airway C-fibres and vagus nerve from the guinea-pig. Neuroscience. 1995 Aug;67(3):741–752. doi: 10.1016/0306-4522(95)00115-y. [DOI] [PubMed] [Google Scholar]
  6. Franco-Cereceda A., Källner G., Lundberg J. M. Cyclo-oxygenase products released by low pH have capsaicin-like actions on sensory nerves in the isolated guinea pig heart. Cardiovasc Res. 1994 Mar;28(3):365–369. doi: 10.1093/cvr/28.3.365. [DOI] [PubMed] [Google Scholar]
  7. Franco-Cereceda A., Lundberg J. M. Capsazepine inhibits low pH- and lactic acid-evoked release of calcitonin gene-related peptide from sensory nerves in guinea-pig heart. Eur J Pharmacol. 1992 Oct 6;221(1):183–184. doi: 10.1016/0014-2999(92)90792-3. [DOI] [PubMed] [Google Scholar]
  8. Iturriaga R., Rumsey W. L., Lahiri S., Spergel D., Wilson D. F. Intracellular pH and oxygen chemoreception in the cat carotid body in vitro. J Appl Physiol (1985) 1992 Jun;72(6):2259–2266. doi: 10.1152/jappl.1992.72.6.2259. [DOI] [PubMed] [Google Scholar]
  9. Lee L. Y., Morton R. F., Lundberg J. M. Pulmonary chemoreflexes elicited by intravenous injection of lactic acid in anesthetized rats. J Appl Physiol (1985) 1996 Dec;81(6):2349–2357. doi: 10.1152/jappl.1996.81.6.2349. [DOI] [PubMed] [Google Scholar]
  10. Lee L. Y., Morton R. F. Pulmonary chemoreflex sensitivity is enhanced by prostaglandin E2 in anesthetized rats. J Appl Physiol (1985) 1995 Nov;79(5):1679–1686. doi: 10.1152/jappl.1995.79.5.1679. [DOI] [PubMed] [Google Scholar]
  11. Longhurst J. C., Dittman L. E. Hypoxia, bradykinin, and prostaglandins stimulate ischemically sensitive visceral afferents. Am J Physiol. 1987 Sep;253(3 Pt 2):H556–H567. doi: 10.1152/ajpheart.1987.253.3.H556. [DOI] [PubMed] [Google Scholar]
  12. Longhurst J. C., Rotto D. M., Kaufman M. P., Stahl G. L. Ischemically sensitive abdominal visceral afferents: response to cyclooxygenase blockade. Am J Physiol. 1991 Dec;261(6 Pt 2):H2075–H2081. doi: 10.1152/ajpheart.1991.261.6.H2075. [DOI] [PubMed] [Google Scholar]
  13. Lou Y. P., Lundberg J. M. Inhibition of low pH evoked activation of airway sensory nerves by capsazepine, a novel capsaicin-receptor antagonist. Biochem Biophys Res Commun. 1992 Nov 30;189(1):537–544. doi: 10.1016/0006-291x(92)91591-d. [DOI] [PubMed] [Google Scholar]
  14. Lundberg J. M., Saria A. Polypeptide-containing neurons in airway smooth muscle. Annu Rev Physiol. 1987;49:557–572. doi: 10.1146/annurev.ph.49.030187.003013. [DOI] [PubMed] [Google Scholar]
  15. Mizock B. A., Falk J. L. Lactic acidosis in critical illness. Crit Care Med. 1992 Jan;20(1):80–93. doi: 10.1097/00003246-199201000-00020. [DOI] [PubMed] [Google Scholar]
  16. Poole R. C., Halestrap A. P. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am J Physiol. 1993 Apr;264(4 Pt 1):C761–C782. doi: 10.1152/ajpcell.1993.264.4.C761. [DOI] [PubMed] [Google Scholar]
  17. Satoh H., Lou Y. P., Lundberg J. M. Inhibitory effects of capsazepine and SR 48968 on citric acid-induced bronchoconstriction in guinea-pigs. Eur J Pharmacol. 1993 Jun 4;236(3):367–372. doi: 10.1016/0014-2999(93)90473-u. [DOI] [PubMed] [Google Scholar]
  18. Schneider U., Poole R. C., Halestrap A. P., Grafe P. Lactate-proton co-transport and its contribution to interstitial acidification during hypoxia in isolated rat spinal roots. Neuroscience. 1993 Apr;53(4):1153–1162. doi: 10.1016/0306-4522(93)90497-4. [DOI] [PubMed] [Google Scholar]
  19. Shams H., Peskar B. A., Scheid P. Acid infusion elicits thromboxane A2-mediated effects on respiration and pulmonary hemodynamics in the cat. Respir Physiol. 1988 Feb;71(2):169–183. doi: 10.1016/0034-5687(88)90014-x. [DOI] [PubMed] [Google Scholar]
  20. Stahl G. L., Longhurst J. C. Ischemically sensitive visceral afferents: importance of H+ derived from lactic acid and hypercapnia. Am J Physiol. 1992 Mar;262(3 Pt 2):H748–H753. doi: 10.1152/ajpheart.1992.262.3.H748. [DOI] [PubMed] [Google Scholar]
  21. Stringer W., Casaburi R., Wasserman K. Acid-base regulation during exercise and recovery in humans. J Appl Physiol (1985) 1992 Mar;72(3):954–961. doi: 10.1152/jappl.1992.72.3.954. [DOI] [PubMed] [Google Scholar]
  22. Thimm F., Baum K. Response of chemosensitive nerve fibers of group III and IV to metabolic changes in rat muscles. Pflugers Arch. 1987 Sep;410(1-2):143–152. doi: 10.1007/BF00581907. [DOI] [PubMed] [Google Scholar]
  23. Thimm F., Carvalho M., Babka M., Meier zu Verl E. Reflex increases in heart-rate induced by perfusing the hind leg of the rat with solutions containing lactic acid. Pflugers Arch. 1984 Mar;400(3):286–293. doi: 10.1007/BF00581561. [DOI] [PubMed] [Google Scholar]
  24. Toffaletti J. G. Blood lactate: biochemistry, laboratory methods, and clinical interpretation. Crit Rev Clin Lab Sci. 1991;28(4):253–268. doi: 10.3109/10408369109106865. [DOI] [PubMed] [Google Scholar]
  25. Trenchard D. CO2/H+ receptors in the lungs of anaesthetized rabbits. Respir Physiol. 1986 Feb;63(2):227–240. doi: 10.1016/0034-5687(86)90116-7. [DOI] [PubMed] [Google Scholar]
  26. Walz W., Mukerji S. Lactate release from cultured astrocytes and neurons: a comparison. Glia. 1988;1(6):366–370. doi: 10.1002/glia.440010603. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES