Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Aug 1;502(Pt 3):481–496. doi: 10.1111/j.1469-7793.1997.481bj.x

Drastic facilitation by alpha-latrotoxin of bovine chromaffin cell exocytosis without measurable enhancement of Ca2+ entry or [Ca2+]i.

P Michelena 1, M T de la Fuente 1, T Vega 1, B Lara 1, M G López 1, L Gandía 1, A G García 1
PMCID: PMC1159522  PMID: 9279802

Abstract

1. Latrotoxin (LTX, 1-3 nM) caused a gradual increase of the spontaneous catecholamine release rate in bovine adrenal chromaffin cells superfused with normal Krebs-Hepes solution containing 2.5 mM Ca2+. Ca2+ removal abolished this effect. LTX enhanced also the secretory responses to high K+ (35 or 70 mM) and to acetylcholine (ACh, 30 microM). 2. The application of Ca2+ pulses to cells previously superfused with a 0 Ca2+ solution (Krebs-Hepes deprived of CaCl2) induced secretory responses that gradually reached 400-800 nA of catecholamines, provided that LTX was present. The responses to ACh or 35 mM K+ pulses (in the presence of Ca2+) were also enhanced by LTX, from around 100-200 nA to over 1000 nA. Though such enhancement remained in the presence of Ca2+ channel blockers, it disappeared upon the lowering of [Na+]o or in electroporated cells. 3. Using protocols similar to those of secretion, LTX did not enhance basal 45Ca2+ uptake, whole-cell Ca2+ currents or basal [Ca2+]i. In fact, LTX attenuated the K(+)- or ACh-evoked increases in 45Ca2+ uptake and [Ca2+]i. 4. It is proposed that the secretory response to brief periods of Ca2+ reintroductions is triggered by local subplasmalemmal Ca2+i transients, produced by the Na(+)-Ca2+ exchanger of the plasma membrane working in the reverse mode. This situation might be physiologically reproduced during ACh stimulation of chromaffin cells, which is followed by the firing of Na(+)-dependent action potentials.

Full text

PDF
481

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading. FEBS Lett. 1985 Nov 11;192(1):13–18. doi: 10.1016/0014-5793(85)80033-8. [DOI] [PubMed] [Google Scholar]
  2. Carvalho M. H., Prat J. C., Garcia A. G., Kirpekar S. M. Ionomycin stimulates secretion of catecholamines from cat adrenal gland and spleen. Am J Physiol. 1982 Mar;242(3):E137–E145. doi: 10.1152/ajpendo.1982.242.3.E137. [DOI] [PubMed] [Google Scholar]
  3. Ceña V., Nicolas G. P., Sanchez-Garcia P., Kirpekar S. M., Garcia A. G. Pharmacological dissection of receptor-associated and voltage-sensitive ionic channels involved in catecholamine release. Neuroscience. 1983 Dec;10(4):1455–1462. doi: 10.1016/0306-4522(83)90126-4. [DOI] [PubMed] [Google Scholar]
  4. Chern Y. J., Chueh S. H., Lin Y. J., Ho C. M., Kao L. S. Presence of Na+/Ca2+ exchange activity and its role in regulation of intracellular calcium concentration in bovine adrenal chromaffin cells. Cell Calcium. 1992 Feb;13(2):99–106. doi: 10.1016/0143-4160(92)90003-b. [DOI] [PubMed] [Google Scholar]
  5. Cochrane D. E., Douglas W. W. Calcium-induced extrusion of secretory granules (exocytosis) in mast cells exposed to 48-80 or the ionophores A-23187 and X-537A. Proc Natl Acad Sci U S A. 1974 Feb;71(2):408–412. doi: 10.1073/pnas.71.2.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DOUGLAS W. W., RUBIN R. P. The role of calcium in the secretory response of the adrenal medulla to acetylcholine. J Physiol. 1961 Nov;159:40–57. doi: 10.1113/jphysiol.1961.sp006791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De la Fuente M. T., Maroto R., Esquerro E., Sánchez-García P., García A. G. The actions of ouabain and lithium chloride on cytosolic Ca2+ in single chromaffin cells. Eur J Pharmacol. 1996 Jun 13;306(1-3):219–226. doi: 10.1016/0014-2999(96)00191-4. [DOI] [PubMed] [Google Scholar]
  8. Deri Z., Adam-Vizi V. Detection of intracellular free Na+ concentration of synaptosomes by a fluorescent indicator, Na(+)-binding benzofuran isophthalate: the effect of veratridine, ouabain, and alpha-latrotoxin. J Neurochem. 1993 Sep;61(3):818–825. doi: 10.1111/j.1471-4159.1993.tb03592.x. [DOI] [PubMed] [Google Scholar]
  9. Eisenberg M., Hall J. E., Mead C. A. The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J Membr Biol. 1973 Dec 31;14(2):143–176. doi: 10.1007/BF01868075. [DOI] [PubMed] [Google Scholar]
  10. Fenwick E. M., Marty A., Neher E. Sodium and calcium channels in bovine chromaffin cells. J Physiol. 1982 Oct;331:599–635. doi: 10.1113/jphysiol.1982.sp014394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Filippov A. K., Tertishnikova S. M., Alekseev A. E., Tsurupa G. P., Pashkov V. N., Grishin E. V. Mechanism of alpha-latrotoxin action as revealed by patch-clamp experiments on Xenopus oocytes injected with rat brain messenger RNA. Neuroscience. 1994 Jul;61(1):179–189. doi: 10.1016/0306-4522(94)90070-1. [DOI] [PubMed] [Google Scholar]
  12. Fonteríz R. I., López M. G., García-Sancho J., García A. G. Alamethicin channel permeation by Ca2+, Mn2+ and Ni2+ in bovine chromaffin cells. FEBS Lett. 1991 May 20;283(1):89–92. doi: 10.1016/0014-5793(91)80560-p. [DOI] [PubMed] [Google Scholar]
  13. Foreman J. C., Mongar J. L., Gomperts B. D. Calcium ionophores and movement of calcium ions following the physiological stimulus to a secretory process. Nature. 1973 Oct 5;245(5423):249–251. doi: 10.1038/245249a0. [DOI] [PubMed] [Google Scholar]
  14. Gandía L., Albillos A., García A. G. Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem Biophys Res Commun. 1993 Jul 30;194(2):671–676. doi: 10.1006/bbrc.1993.1874. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  17. Hurlbut W. P., Chieregatti E., Valtorta F., Haimann C. Alpha-latrotoxin channels in neuroblastoma cells. J Membr Biol. 1994 Feb;138(1):91–102. doi: 10.1007/BF00211072. [DOI] [PubMed] [Google Scholar]
  18. Latorre R., Alvarez O. Voltage-dependent channels in planar lipid bilayer membranes. Physiol Rev. 1981 Jan;61(1):77–150. doi: 10.1152/physrev.1981.61.1.77. [DOI] [PubMed] [Google Scholar]
  19. Liu P. S., Kao L. S. Na(+)-dependent Ca2+ influx in bovine adrenal chromaffin cells. Cell Calcium. 1990 Oct;11(9):573–579. doi: 10.1016/0143-4160(90)90011-i. [DOI] [PubMed] [Google Scholar]
  20. Livett B. G. Adrenal medullary chromaffin cells in vitro. Physiol Rev. 1984 Oct;64(4):1103–1161. doi: 10.1152/physrev.1984.64.4.1103. [DOI] [PubMed] [Google Scholar]
  21. Longenecker H. E., Jr, Hurlbut W. P., Mauro A., Clark A. W. Effects of black widow spider venom on the frog neuromuscular junction. Effects on end-plate potential, miniature end-plate potential and nerve terminal spike. Nature. 1970 Feb 21;225(5234):701–703. doi: 10.1038/225701a0. [DOI] [PubMed] [Google Scholar]
  22. López M. G., Villarroya M., Lara B., Martínez Sierra R., Albillos A., García A. G., Gandía L. Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett. 1994 Aug 8;349(3):331–337. doi: 10.1016/0014-5793(94)00696-2. [DOI] [PubMed] [Google Scholar]
  23. Michelena P., Vega T., Montiel C., López M. G., García-Perez L. E., Gandía L., Garc-ia A. G. Effects of tyramine and calcium on the kinetics of secretion in intact and electroporated chromaffin cells superfused at high speed. Pflugers Arch. 1995 Dec;431(2):283–296. doi: 10.1007/BF00410202. [DOI] [PubMed] [Google Scholar]
  24. Moro M. A., López M. G., Gandía L., Michelena P., García A. G. Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Anal Biochem. 1990 Mar;185(2):243–248. doi: 10.1016/0003-2697(90)90287-j. [DOI] [PubMed] [Google Scholar]
  25. Neher E., Augustine G. J. Calcium gradients and buffers in bovine chromaffin cells. J Physiol. 1992 May;450:273–301. doi: 10.1113/jphysiol.1992.sp019127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pascual R., Horga J. F., Sánchez-García P., García A. G. Release of noradrenaline by the ionophore X537A from normal and reserpinized guinea-pig atrium. Naunyn Schmiedebergs Arch Pharmacol. 1977 Dec;301(1):57–64. doi: 10.1007/BF00501264. [DOI] [PubMed] [Google Scholar]
  27. Petrenko A. G. alpha-Latrotoxin receptor. Implications in nerve terminal function. FEBS Lett. 1993 Jun 28;325(1-2):81–85. doi: 10.1016/0014-5793(93)81418-y. [DOI] [PubMed] [Google Scholar]
  28. Picotti G. B., Bondiolotti G. P., Meldolesi J. Peripheral catecholamine release by alpha-latrotoxin in the rat. Naunyn Schmiedebergs Arch Pharmacol. 1982 Sep;320(3):224–229. doi: 10.1007/BF00510132. [DOI] [PubMed] [Google Scholar]
  29. Pressman B. C. Properties of ionophores with broad range cation selectivity. Fed Proc. 1973 Jun;32(6):1698–1703. [PubMed] [Google Scholar]
  30. Rosenthal L., Zacchetti D., Madeddu L., Meldolesi J. Mode of action of alpha-latrotoxin: role of divalent cations in Ca2(+)-dependent and Ca2(+)-independent effects mediated by the toxin. Mol Pharmacol. 1990 Dec;38(6):917–923. [PubMed] [Google Scholar]
  31. Schiavone M. T., Kirpekar S. M. Inactivation of secretory responses to potassium and nicotine in the cat adrenal medulla. J Pharmacol Exp Ther. 1982 Dec;223(3):743–749. [PubMed] [Google Scholar]
  32. Surkova I. Can exocytosis induced by alpha-latrotoxin be explained solely by its channel-forming activity? Ann N Y Acad Sci. 1994 Mar 9;710:48–64. doi: 10.1111/j.1749-6632.1994.tb26613.x. [DOI] [PubMed] [Google Scholar]
  33. Török T. L., Powis D. A. Catecholamine release from bovine chromaffin cells: the role of sodium-calcium exchange in ouabain-evoked release. Exp Physiol. 1990 Jul;75(4):573–586. doi: 10.1113/expphysiol.1990.sp003433. [DOI] [PubMed] [Google Scholar]
  34. Ushkaryov Y. A., Petrenko A. G., Geppert M., Südhof T. C. Neurexins: synaptic cell surface proteins related to the alpha-latrotoxin receptor and laminin. Science. 1992 Jul 3;257(5066):50–56. doi: 10.1126/science.1621094. [DOI] [PubMed] [Google Scholar]
  35. von Rüden L., Neher E. A Ca-dependent early step in the release of catecholamines from adrenal chromaffin cells. Science. 1993 Nov 12;262(5136):1061–1065. doi: 10.1126/science.8235626. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES