Abstract
1. The hypothesis that the ventilatory resistance to O2 flow (RV) does limit maximal O2 consumption (VO2,max) in hypoxia, but not in normoxia, at least in non-athletic subjects, was tested. RV was reduced by using He-O2 mixtures. 2. VO2,max was measured during graded cyclo-ergometric exercise in eight men (aged 30 +/- 3 years) who breathed N2-O2 and He-O2 mixtures in normoxia (inspired oxygen fraction (FI,O2) = 0.21) and hypoxia (FI,O2 = 0.11). O2 consumption, expired and alveolar ventilations (VE and VA, respectively), blood lactate and haemoglobin concentrations, heart rate and arterial oxygen saturation (Sa,O2) were determined at the steady state of each work load. Arterial O2 and CO2 partial pressures (Pa,O2 and Pa,CO2, respectively) were measured at rest and at the end of the highest work load. 3. Maximal VE and VA were significantly increased by He-O2 breathing in normoxia (+27 and +18%, respectively), without significant changes in Pa,O2, Sa,O2 and VO2,max. In hypoxia, VE and VA increased (+31 and +24%, respectively), together with Pa,O2 (+17%), Sa,O2 (+6%) and VO2,max (+14%). 4. The results support the hypothesis that the role of RV in limiting VO2,max is negligible in normoxia. In hypoxia, the finding that higher VE and VA values during He-O2 breathing led to higher VO2,max values suggests a greater role of RV as a limiting factor. It is unclear whether the finding that the VO2,max values were the same during He-O2 and N2-O2 breathing in normoxia is due to a non-linear response of the O2 transfer system, as previously proposed.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blomqvist C. G., Saltin B. Cardiovascular adaptations to physical training. Annu Rev Physiol. 1983;45:169–189. doi: 10.1146/annurev.ph.45.030183.001125. [DOI] [PubMed] [Google Scholar]
- Bowers R. W., Fox E. L. Metabolic and thermal responses of man in various He-O-2 and air environments. J Appl Physiol. 1967 Oct;23(4):561–565. doi: 10.1152/jappl.1967.23.4.561. [DOI] [PubMed] [Google Scholar]
- Brice A. G., Welch H. G. Metabolic and cardiorespiratory responses to He-O2 breathing during exercise. J Appl Physiol Respir Environ Exerc Physiol. 1983 Feb;54(2):387–392. doi: 10.1152/jappl.1983.54.2.387. [DOI] [PubMed] [Google Scholar]
- Erickson B. K., Seaman J., Kubo K., Hiraga A., Kai M., Yamaya Y., Wagner P. D. Hypoxic helium breathing does not reduce alveolar-arterial PO2 difference in the horse. Respir Physiol. 1995 Jun;100(3):253–260. doi: 10.1016/0034-5687(94)00138-p. [DOI] [PubMed] [Google Scholar]
- Ferretti G., di Prampero P. E. Factors limiting maximal O2 consumption: effects of acute changes in ventilation. Respir Physiol. 1995 Feb;99(2):259–271. doi: 10.1016/0034-5687(94)00092-e. [DOI] [PubMed] [Google Scholar]
- Howley E. T., Bassett D. R., Jr, Welch H. G. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995 Sep;27(9):1292–1301. [PubMed] [Google Scholar]
- Katch V. L., Sady S. S., Freedson P. Biological variability in maximum aerobic power. Med Sci Sports Exerc. 1982;14(1):21–25. doi: 10.1249/00005768-198201000-00004. [DOI] [PubMed] [Google Scholar]
- Murphy T. M., Clark W. H., Buckingham I. P., Young W. A. Respiratory gas exchange in exercise during helium-oxygen breathing. J Appl Physiol. 1969 Mar;26(3):303–307. doi: 10.1152/jappl.1969.26.3.303. [DOI] [PubMed] [Google Scholar]
- Olafsson S., Hyatt R. E. Ventilatory mechanics and expiratory flow limitation during exercise in normal subjects. J Clin Invest. 1969 Mar;48(3):564–573. doi: 10.1172/JCI106015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Papamoschou D. Theoretical validation of the respiratory benefits of helium-oxygen mixtures. Respir Physiol. 1995 Jan;99(1):183–190. doi: 10.1016/0034-5687(94)00071-7. [DOI] [PubMed] [Google Scholar]
- Piiper J., Dejours P., Haab P., Rahn H. Concepts and basic quantities in gas exchange physiology. Respir Physiol. 1971 Dec;13(3):292–304. doi: 10.1016/0034-5687(71)90034-x. [DOI] [PubMed] [Google Scholar]
- Robertson W. G., McRae G. L. Study of man during a 56-day exposure to an oxygen-helium atmosphere at 258 mm. Hg total pressure. VII. Respiratory function. Aerosp Med. 1966 Jun;37(6):578–582. [PubMed] [Google Scholar]
- Spitler D. L., Horvath S. M., Kobayashi K., Wagner J. A. Work performance breathing normoxic nitrogen or helium gas mixtures. Eur J Appl Physiol Occup Physiol. 1980;43(2):157–166. doi: 10.1007/BF00422446. [DOI] [PubMed] [Google Scholar]
- Turner D. L., Hoppeler H., Noti C., Gurtner H. P., Gerber H., Schena F., Kayser B., Ferretti G. Limitations to VO2max in humans after blood retransfusion. Respir Physiol. 1993 Jun;92(3):329–341. doi: 10.1016/0034-5687(93)90017-5. [DOI] [PubMed] [Google Scholar]
- Wagner P. D. Algebraic analysis of the determinants of VO2,max. Respir Physiol. 1993 Aug;93(2):221–237. doi: 10.1016/0034-5687(93)90007-w. [DOI] [PubMed] [Google Scholar]
- Wagner P. D. Gas exchange and peripheral diffusion limitation. Med Sci Sports Exerc. 1992 Jan;24(1):54–58. [PubMed] [Google Scholar]
- Wilson G. D., Welch H. G. Effects of varying concentrations of N2/O2 and He/O2 on exercise tolerance in man. Med Sci Sports Exerc. 1980;12(5):380–384. [PubMed] [Google Scholar]
- Younes M., Kivinen G. Respiratory mechanics and breathing pattern during and following maximal exercise. J Appl Physiol Respir Environ Exerc Physiol. 1984 Dec;57(6):1773–1782. doi: 10.1152/jappl.1984.57.6.1773. [DOI] [PubMed] [Google Scholar]
- di Prampero P. E., Ferretti G. Factors limiting maximal oxygen consumption in humans. Respir Physiol. 1990 May-Jun;80(2-3):113–127. doi: 10.1016/0034-5687(90)90075-a. [DOI] [PubMed] [Google Scholar]
- di Prampero P. E. Metabolic and circulatory limitations to VO2 max at the whole animal level. J Exp Biol. 1985 Mar;115:319–331. doi: 10.1242/jeb.115.1.319. [DOI] [PubMed] [Google Scholar]