Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Oct 15;504(Pt 2):359–365. doi: 10.1111/j.1469-7793.1997.359be.x

Action potential propagation into the presynaptic dendrites of rat mitral cells.

J Bischofberger 1, P Jonas 1
PMCID: PMC1159916  PMID: 9365910

Abstract

1. Dendritic patch-clamp recordings were obtained from mitral cells in rat olfactory bulb slices, up to 350 microns from the soma. Simultaneous dendritic and somatic whole-cell recordings indicated that action potentials (APs) evoked by somatic or dendritic current injection were initiated near the soma. Both the large amplitude (100.7 +/- 1.1 mV) and the short duration (1.38 +/- 0.07 ms) of the AP were maintained as the AP propagated back into the primary mitral cell dendrites. 2. Outside-out patches isolated from mitral cell dendrites contained voltage-gated Na+ channels (peak conductance density, 90 pS micron-2 at -10 mV). When an AP was used as a somatic voltage-clamp command in the presence of 1 microM tetrodotoxin (TTX), the amplitude of the dendritic potential was attenuated to 48 +/- 14 mV. This shows that dendritic Na+ channels support the active back-propagation of APs. 3. Dendritic patches contained voltage-gated K+ channels with high density (conductance density, 513 pS micron-2 at 30 mV). Dendritic K+ currents were reduced to 35% by 1 mM external tetraethylammonium chloride (TEACl). When an AP was used as a somatic voltage-clamp command in the presence of TEACl, the dendritic potential was markedly prolonged. This indicates that dendritic K+ channels mediate the fast repolarization of dendritic APs. 4. We conclude that voltage-gated Na+ and K+ channels support dendritic APs with large amplitudes and short durations that may trigger fast transmitter release at dendrodendritic synapses in the olfactory bulb.

Full text

PDF
361

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhalla U. S., Bower J. M. Exploring parameter space in detailed single neuron models: simulations of the mitral and granule cells of the olfactory bulb. J Neurophysiol. 1993 Jun;69(6):1948–1965. doi: 10.1152/jn.1993.69.6.1948. [DOI] [PubMed] [Google Scholar]
  2. Bischofberger J., Schild D. Different spatial patterns of [Ca2+] increase caused by N- and L-type Ca2+ channel activation in frog olfactory bulb neurones. J Physiol. 1995 Sep 1;487(Pt 2):305–317. doi: 10.1113/jphysiol.1995.sp020881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borst J. G., Helmchen F., Sakmann B. Pre- and postsynaptic whole-cell recordings in the medial nucleus of the trapezoid body of the rat. J Physiol. 1995 Dec 15;489(Pt 3):825–840. doi: 10.1113/jphysiol.1995.sp021095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forsythe I. D. Direct patch recording from identified presynaptic terminals mediating glutamatergic EPSCs in the rat CNS, in vitro. J Physiol. 1994 Sep 15;479(Pt 3):381–387. doi: 10.1113/jphysiol.1994.sp020303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Geiger J. R., Lübke J., Roth A., Frotscher M., Jonas P. Submillisecond AMPA receptor-mediated signaling at a principal neuron-interneuron synapse. Neuron. 1997 Jun;18(6):1009–1023. doi: 10.1016/s0896-6273(00)80339-6. [DOI] [PubMed] [Google Scholar]
  6. Hoffman D. A., Magee J. C., Colbert C. M., Johnston D. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature. 1997 Jun 26;387(6636):869–875. doi: 10.1038/43119. [DOI] [PubMed] [Google Scholar]
  7. Häusser M., Stuart G., Racca C., Sakmann B. Axonal initiation and active dendritic propagation of action potentials in substantia nigra neurons. Neuron. 1995 Sep;15(3):637–647. doi: 10.1016/0896-6273(95)90152-3. [DOI] [PubMed] [Google Scholar]
  8. Jahr C. E., Nicoll R. A. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb. J Physiol. 1982 May;326:213–234. doi: 10.1113/jphysiol.1982.sp014187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnston D., Magee J. C., Colbert C. M., Cristie B. R. Active properties of neuronal dendrites. Annu Rev Neurosci. 1996;19:165–186. doi: 10.1146/annurev.ne.19.030196.001121. [DOI] [PubMed] [Google Scholar]
  10. Mainen Z. F., Joerges J., Huguenard J. R., Sejnowski T. J. A model of spike initiation in neocortical pyramidal neurons. Neuron. 1995 Dec;15(6):1427–1439. doi: 10.1016/0896-6273(95)90020-9. [DOI] [PubMed] [Google Scholar]
  11. Price J. L., Powell T. P. The mitral and short axon cells of the olfactory bulb. J Cell Sci. 1970 Nov;7(3):631–651. doi: 10.1242/jcs.7.3.631. [DOI] [PubMed] [Google Scholar]
  12. Rall W., Shepherd G. M., Reese T. S., Brightman M. W. Dendrodendritic synaptic pathway for inhibition in the olfactory bulb. Exp Neurol. 1966 Jan;14(1):44–56. doi: 10.1016/0014-4886(66)90023-9. [DOI] [PubMed] [Google Scholar]
  13. Schild D., Geiling H., Bischofberger J. Imaging of L-type Ca2+ channels in olfactory bulb neurones using fluorescent dihydropyridine and a styryl dye. J Neurosci Methods. 1995 Jul;59(2):183–190. doi: 10.1016/0165-0270(94)00181-f. [DOI] [PubMed] [Google Scholar]
  14. Shepherd G. M., Brayton R. K. Computer simulation of a dendrodendritic synaptic circuit for self- and lateral-inhibition in the olfactory bulb. Brain Res. 1979 Oct 19;175(2):377–382. doi: 10.1016/0006-8993(79)91020-5. [DOI] [PubMed] [Google Scholar]
  15. Spruston N., Jonas P., Sakmann B. Dendritic glutamate receptor channels in rat hippocampal CA3 and CA1 pyramidal neurons. J Physiol. 1995 Jan 15;482(Pt 2):325–352. doi: 10.1113/jphysiol.1995.sp020521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Stuart G. J., Sakmann B. Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature. 1994 Jan 6;367(6458):69–72. doi: 10.1038/367069a0. [DOI] [PubMed] [Google Scholar]
  17. Stuart G., Spruston N., Sakmann B., Häusser M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 1997 Mar;20(3):125–131. doi: 10.1016/s0166-2236(96)10075-8. [DOI] [PubMed] [Google Scholar]
  18. Trombley P. Q., Westbrook G. L. Excitatory synaptic transmission in cultures of rat olfactory bulb. J Neurophysiol. 1990 Aug;64(2):598–606. doi: 10.1152/jn.1990.64.2.598. [DOI] [PubMed] [Google Scholar]
  19. Turner R. W., Meyers D. E., Richardson T. L., Barker J. L. The site for initiation of action potential discharge over the somatodendritic axis of rat hippocampal CA1 pyramidal neurons. J Neurosci. 1991 Jul;11(7):2270–2280. doi: 10.1523/JNEUROSCI.11-07-02270.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wang X. Y., McKenzie J. S., Kemm R. E. Whole-cell K+ currents in identified olfactory bulb output neurones of rats. J Physiol. 1996 Jan 1;490(Pt 1):63–77. doi: 10.1113/jphysiol.1996.sp021127. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES