Abstract
1. Total RNA isolated from embryonic chick paravertebral sympathetic ganglia was used in a reverse transcription-polymerase chain reaction (RT-PCR) assay with a pair of degenerate oligonucleotide primers deduced from conserved regions of mammalian glycine receptor alpha-subunits. Three classes of cDNA were identified which encode portions of the chicken homologues of the mammalian glycine receptor alpha 1, alpha 2 and alpha 3 subunits. 2. The presence of functional glycine receptors was investigated in the whole-cell configuration of the patch-clamp technique in neurons dissociated from the ganglia and kept in culture for 7-8 days. In cells voltage clamped to -70 mV, glycine consistently induced inward currents in a concentration-dependent manner and elicited half-maximal peak current amplitudes at 43 microM. 3. The steady-state current-voltage relation for glycine-induced currents was linear between +80 and -60 mV, but showed outward rectification at more hyperpolarized potentials. Reversal potentials of these currents shifted with changes in intracellular chloride concentrations and matched the calculated Nernst potentials for chloride. 4. beta-Alanine and taurine were significantly less potent than glycine in triggering inward currents, with half-maximal responses at 79 and 86 microM, respectively. At maximally active concentrations, beta-alanine-evoked currents were identical in amplitude to those induced by glycine. Taurine-evoked currents, in contrast, never reached the same amplitude as glycine-induced currents. 5. The classical glycine receptor antagonist strychnine reversibly reduced glycine-induced currents, with half-maximal inhibition occurring at 62 nM. Two more recently characterized glycine receptor antagonists, isonipecotic acid (half-maximal inhibition at 2 mM) and 7-trifluoromethyl-4-hydroxyquinoline-3-carboxylic acid (half-maximal inhibition at 67 microM), also blocked glycine-evoked currents in a reversible manner. The chloride channel blocker picrotoxin reduced glycine-evoked currents, with half-maximal effects at 348 microM. Inhibition by the glycine receptor channel blocker cyanotriphenylborate was half-maximal at 4 microM. 6. Apart from evoking inward currents, glycine occasionally triggered short (< 100 ms) spike-like currents which were abolished by hexamethonium and thus reflected synaptic release of endogenous acetylcholine. In addition, glycine caused Ca(2+)-dependent and tetrodotoxin-sensitive tritium overflow from neurons previously labelled with [3H]noradrenaline. This stimulatory action of glycine was reduced in the presence of strychnine and after treatment with the chloride uptake inhibitor furosemide (frusemide). 7. In 65% of neurons loaded with the Ca2+ indicator fura-2 acetoxymethyl ester, glycine increased the ratio of the fluorescence signal obtained with excitation wavelengths of 340 and 380 nm, respectively, which indicates a rise in intracellular Ca2+ concentration. 8. The results show that sympathetic neurons contain transcripts for different glycine receptor alpha-subunits and carry functional heteromeric glycine receptors which depolarize the majority of neurons to trigger transmitter release.
Full text
PDF![683](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/51d9fe042e18/jphysiol00379-0175.png)
![684](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/3703525e65dc/jphysiol00379-0176.png)
![685](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/03becb85d5e0/jphysiol00379-0177.png)
![686](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/7cd765e3e3ed/jphysiol00379-0178.png)
![687](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/5410d9d09a89/jphysiol00379-0179.png)
![688](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/a3ae8260a7c3/jphysiol00379-0180.png)
![689](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/5b1510f45b9b/jphysiol00379-0181.png)
![690](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/01379fb7ccd3/jphysiol00379-0182.png)
![691](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/90f908f50c65/jphysiol00379-0183.png)
![692](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/08ce8df3f4c4/jphysiol00379-0184.png)
![693](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/13327c27a7ff/jphysiol00379-0185.png)
![694](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/1159970/552bc96460b0/jphysiol00379-0186.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams R. H., Sato K., Shimada S., Tohyama M., Püschel A. W., Betz H. Gene structure and glial expression of the glycine transporter GlyT1 in embryonic and adult rodents. J Neurosci. 1995 Mar;15(3 Pt 2):2524–2532. doi: 10.1523/JNEUROSCI.15-03-02524.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Akaike N., Kaneda M. Glycine-gated chloride current in acutely isolated rat hypothalamic neurons. J Neurophysiol. 1989 Dec;62(6):1400–1409. doi: 10.1152/jn.1989.62.6.1400. [DOI] [PubMed] [Google Scholar]
- Ballanyi K., Grafe P. An intracellular analysis of gamma-aminobutyric-acid-associated ion movements in rat sympathetic neurones. J Physiol. 1985 Aug;365:41–58. doi: 10.1113/jphysiol.1985.sp015758. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Betz H. Glycine receptors: heterogeneous and widespread in the mammalian brain. Trends Neurosci. 1991 Oct;14(10):458–461. doi: 10.1016/0166-2236(91)90045-v. [DOI] [PubMed] [Google Scholar]
- Boehm S., Betz H. Somatostatin inhibits excitatory transmission at rat hippocampal synapses via presynaptic receptors. J Neurosci. 1997 Jun 1;17(11):4066–4075. doi: 10.1523/JNEUROSCI.17-11-04066.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boehm S., Huck S. Receptors controlling transmitter release from sympathetic neurons in vitro. Prog Neurobiol. 1997 Feb;51(3):225–242. doi: 10.1016/s0301-0082(96)00056-1. [DOI] [PubMed] [Google Scholar]
- Bormann J., Hamill O. P., Sakmann B. Mechanism of anion permeation through channels gated by glycine and gamma-aminobutyric acid in mouse cultured spinal neurones. J Physiol. 1987 Apr;385:243–286. doi: 10.1113/jphysiol.1987.sp016493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bormann J., Rundström N., Betz H., Langosch D. Residues within transmembrane segment M2 determine chloride conductance of glycine receptor homo- and hetero-oligomers. EMBO J. 1993 Oct;12(10):3729–3737. doi: 10.1002/j.1460-2075.1993.tb06050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bowery N. G., Brown D. A., White R. D., Yamini G. [3H]gamma-Aminobutyric acid uptake into neuroglial cells of rat superior cervical sympathetic ganglia. J Physiol. 1979 Aug;293:51–74. doi: 10.1113/jphysiol.1979.sp012878. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Böhm S., Huck S., Drobny H., Singer E. A. Electrically evoked noradrenaline release from cultured chick sympathetic neurons: modulation via presynaptic alpha-adrenoceptors and lack of autoinhibition. Naunyn Schmiedebergs Arch Pharmacol. 1991 Jul;344(1):130–132. doi: 10.1007/BF00167393. [DOI] [PubMed] [Google Scholar]
- Cherubini E., Gaiarsa J. L., Ben-Ari Y. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 1991 Dec;14(12):515–519. doi: 10.1016/0166-2236(91)90003-d. [DOI] [PubMed] [Google Scholar]
- DeLean A., Munson P. J., Rodbard D. Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose-response curves. Am J Physiol. 1978 Aug;235(2):E97–102. doi: 10.1152/ajpendo.1978.235.2.E97. [DOI] [PubMed] [Google Scholar]
- Ernsberger U., Rohrer H. The development of the noradrenergic transmitter phenotype in postganglionic sympathetic neurons. Neurochem Res. 1996 Jul;21(7):823–829. doi: 10.1007/BF02532306. [DOI] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
- Heller S., Ernsberger U., Rohrer H. Extrinsic signals in the developing nervous system: the role of neurokines during neurogenesis. Perspect Dev Neurobiol. 1996;4(1):19–34. [PubMed] [Google Scholar]
- Jursky F., Nelson N. Developmental expression of the glycine transporters GLYT1 and GLYT2 in mouse brain. J Neurochem. 1996 Jul;67(1):336–344. doi: 10.1046/j.1471-4159.1996.67010336.x. [DOI] [PubMed] [Google Scholar]
- Kuhse J., Betz H., Kirsch J. The inhibitory glycine receptor: architecture, synaptic localization and molecular pathology of a postsynaptic ion-channel complex. Curr Opin Neurobiol. 1995 Jun;5(3):318–323. doi: 10.1016/0959-4388(95)80044-1. [DOI] [PubMed] [Google Scholar]
- Kuhse J., Laube B., Magalei D., Betz H. Assembly of the inhibitory glycine receptor: identification of amino acid sequence motifs governing subunit stoichiometry. Neuron. 1993 Dec;11(6):1049–1056. doi: 10.1016/0896-6273(93)90218-g. [DOI] [PubMed] [Google Scholar]
- Matzenbach B., Maulet Y., Sefton L., Courtier B., Avner P., Guénet J. L., Betz H. Structural analysis of mouse glycine receptor alpha subunit genes. Identification and chromosomal localization of a novel variant. J Biol Chem. 1994 Jan 28;269(4):2607–2612. [PubMed] [Google Scholar]
- McGale E. H., Pye I. F., Stonier C., Hutchinson E. C., Aber G. M. Studies of the inter-relationship between cerebrospinal fluid and plasma amino acid concentrations in normal individuals. J Neurochem. 1977 Aug;29(2):291–297. doi: 10.1111/j.1471-4159.1977.tb09621.x. [DOI] [PubMed] [Google Scholar]
- O'Lague P. H., Obata K., Claude P., Furshpan E. J., Potter D. D. Evidence for cholinergic synapses between dissociated rat sympathetic neurons in cell culture. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3602–3606. doi: 10.1073/pnas.71.9.3602. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owens D. F., Boyce L. H., Davis M. B., Kriegstein A. R. Excitatory GABA responses in embryonic and neonatal cortical slices demonstrated by gramicidin perforated-patch recordings and calcium imaging. J Neurosci. 1996 Oct 15;16(20):6414–6423. doi: 10.1523/JNEUROSCI.16-20-06414.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pribilla I., Takagi T., Langosch D., Bormann J., Betz H. The atypical M2 segment of the beta subunit confers picrotoxinin resistance to inhibitory glycine receptor channels. EMBO J. 1992 Dec;11(12):4305–4311. doi: 10.1002/j.1460-2075.1992.tb05529.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reichling D. B., Kyrozis A., Wang J., MacDermott A. B. Mechanisms of GABA and glycine depolarization-induced calcium transients in rat dorsal horn neurons. J Physiol. 1994 May 1;476(3):411–421. doi: 10.1113/jphysiol.1994.sp020142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rundström N., Schmieden V., Betz H., Bormann J., Langosch D. Cyanotriphenylborate: subtype-specific blocker of glycine receptor chloride channels. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8950–8954. doi: 10.1073/pnas.91.19.8950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt C. J., Taylor V. L. Strychnine-sensitive, glycine-induced release of [3H]norepinephrine from rat hippocampal slices. J Neurochem. 1990 Jun;54(6):2077–2081. doi: 10.1111/j.1471-4159.1990.tb04913.x. [DOI] [PubMed] [Google Scholar]
- Schmieden V., Betz H. Pharmacology of the inhibitory glycine receptor: agonist and antagonist actions of amino acids and piperidine carboxylic acid compounds. Mol Pharmacol. 1995 Nov;48(5):919–927. [PubMed] [Google Scholar]
- Schmieden V., Grenningloh G., Schofield P. R., Betz H. Functional expression in Xenopus oocytes of the strychnine binding 48 kd subunit of the glycine receptor. EMBO J. 1989 Mar;8(3):695–700. doi: 10.1002/j.1460-2075.1989.tb03428.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmieden V., Jezequel S., Betz H. Novel antagonists of the inhibitory glycine receptor derived from quinolinic acid compounds. Mol Pharmacol. 1996 Nov;50(5):1200–1206. [PubMed] [Google Scholar]
- Schmieden V., Kuhse J., Betz H. Agonist pharmacology of neonatal and adult glycine receptor alpha subunits: identification of amino acid residues involved in taurine activation. EMBO J. 1992 Jun;11(6):2025–2032. doi: 10.1002/j.1460-2075.1992.tb05259.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shirasaki T., Klee M. R., Nakaye T., Akaike N. Differential blockade of bicuculline and strychnine on GABA- and glycine-induced responses in dissociated rat hippocampal pyramidal cells. Brain Res. 1991 Oct 4;561(1):77–83. doi: 10.1016/0006-8993(91)90751-g. [DOI] [PubMed] [Google Scholar]
- Staley K., Smith R., Schaack J., Wilcox C., Jentsch T. J. Alteration of GABAA receptor function following gene transfer of the CLC-2 chloride channel. Neuron. 1996 Sep;17(3):543–551. doi: 10.1016/s0896-6273(00)80186-5. [DOI] [PubMed] [Google Scholar]
- Suda K., Barde Y. A., Thoenen H. Nerve growth factor in mouse and rat serum: correlation between bioassay and radioimmunoassay determinations. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4042–4046. doi: 10.1073/pnas.75.8.4042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tokutomi N., Kaneda M., Akaike N. What confers specificity on glycine for its receptor site? Br J Pharmacol. 1989 Jun;97(2):353–360. doi: 10.1111/j.1476-5381.1989.tb11961.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Trombley P. Q., Shepherd G. M. Glycine exerts potent inhibitory actions on mammalian olfactory bulb neurons. J Neurophysiol. 1994 Feb;71(2):761–767. doi: 10.1152/jn.1994.71.2.761. [DOI] [PubMed] [Google Scholar]
- Wang J., Reichling D. B., Kyrozis A., MacDermott A. B. Developmental loss of GABA- and glycine-induced depolarization and Ca2+ transients in embryonic rat dorsal horn neurons in culture. Eur J Neurosci. 1994 Aug 1;6(8):1275–1280. doi: 10.1111/j.1460-9568.1994.tb00317.x. [DOI] [PubMed] [Google Scholar]
- Young A. B., Snyder S. H. Strychnine binding associated with glycine receptors of the central nervous system. Proc Natl Acad Sci U S A. 1973 Oct;70(10):2832–2836. doi: 10.1073/pnas.70.10.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhang Z. W., Berg D. K. Patch-clamp analysis of glycine-induced currents in chick ciliary ganglion neurons. J Physiol. 1995 Sep 1;487(Pt 2):395–405. doi: 10.1113/jphysiol.1995.sp020888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- von Holst A., Rodriguez-Tébar A., Michaille J. J., Dhouailly D., Bäckström A., Ebendal T., Rohrer H. Retinoic acid-mediated increase in TrkA expression is sufficient to elicit NGF-dependent survival of sympathetic neurons. Mol Cell Neurosci. 1995 Jun;6(3):185–198. doi: 10.1006/mcne.1995.1016. [DOI] [PubMed] [Google Scholar]