Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1997 Nov 15;505(Pt 1):13–22. doi: 10.1111/j.1469-7793.1997.013bc.x

A C-terminal peptide of the GIRK1 subunit directly blocks the G protein-activated K+ channel (GIRK) expressed in Xenopus oocytes.

T Luchian 1, N Dascal 1, C Dessauer 1, D Platzer 1, N Davidson 1, H A Lester 1, W Schreibmayer 1
PMCID: PMC1160090  PMID: 9409468

Abstract

1. In order to find out the functional roles of cytosolic regions of a G protein-activated, inwardly rectifying potassium channel subunit we studied block of GIRK channels, expressed in Xenopus laevis oocytes, by synthetic peptides in isolated inside-out membrane patches. 2. A peptide (DS6) derived from the very end of the C-terminus of GIRK1 reversibly blocked GIRK activity with IC50 values of 7.9 +/- 2.0 or 3.5 +/- 0.5 micrograms ml-1 (corresponding to 3.7 +/- 0.9 or 1.7 +/- 0.2 mumol l-1) for GIRK1/GIRK5 or GIRK1/GIRK4 channels, respectively. 3. Dose dependency studies of GIRK activation by purified beta gamma subunits of the G protein (G beta gamma) showed that DS6 block of GIRK channels is not the result of competition of the peptide with functional GIRK channels for the available G beta gamma. 4. Burst duration of GIRK channels was reduced, whereas long closed times between bursts were markedly increased, accounting for the channel block observed. 5. Block by the DS6 peptide was slightly voltage dependent, being stronger at more negative potentials. 6. These data support the hypothesis that the distal part of the carboxy-terminus of GIRK1 is a part of the intrinsic gate that keeps GIRK channels closed in the absence of G beta gamma.

Full text

PDF
16

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashford M. L., Bond C. T., Blair T. A., Adelman J. P. Cloning and functional expression of a rat heart KATP channel. Nature. 1995 Dec 21;378(6559):792–792. doi: 10.1038/378792a0. [DOI] [PubMed] [Google Scholar]
  2. Cohen N. A., Sha Q., Makhina E. N., Lopatin A. N., Linder M. E., Snyder S. H., Nichols C. G. Inhibition of an inward rectifier potassium channel (Kir2.3) by G-protein betagamma subunits. J Biol Chem. 1996 Dec 13;271(50):32301–32305. doi: 10.1074/jbc.271.50.32301. [DOI] [PubMed] [Google Scholar]
  3. Dascal N., Doupnik C. A., Ivanina T., Bausch S., Wang W., Lin C., Garvey J., Chavkin C., Lester H. A., Davidson N. Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail. Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6758–6762. doi: 10.1073/pnas.92.15.6758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dascal N., Schreibmayer W., Lim N. F., Wang W., Chavkin C., DiMagno L., Labarca C., Kieffer B. L., Gaveriaux-Ruff C., Trollinger D. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10235–10239. doi: 10.1073/pnas.90.21.10235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Doupnik C. A., Davidson N., Lester H. A. The inward rectifier potassium channel family. Curr Opin Neurobiol. 1995 Jun;5(3):268–277. doi: 10.1016/0959-4388(95)80038-7. [DOI] [PubMed] [Google Scholar]
  6. Ficker E., Taglialatela M., Wible B. A., Henley C. M., Brown A. M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 1994 Nov 11;266(5187):1068–1072. doi: 10.1126/science.7973666. [DOI] [PubMed] [Google Scholar]
  7. Ho K., Nichols C. G., Lederer W. J., Lytton J., Vassilev P. M., Kanazirska M. V., Hebert S. C. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. 1993 Mar 4;362(6415):31–38. doi: 10.1038/362031a0. [DOI] [PubMed] [Google Scholar]
  8. Hoshi T., Zagotta W. N., Aldrich R. W. Biophysical and molecular mechanisms of Shaker potassium channel inactivation. Science. 1990 Oct 26;250(4980):533–538. doi: 10.1126/science.2122519. [DOI] [PubMed] [Google Scholar]
  9. Huang C. L., Slesinger P. A., Casey P. J., Jan Y. N., Jan L. Y. Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron. 1995 Nov;15(5):1133–1143. doi: 10.1016/0896-6273(95)90101-9. [DOI] [PubMed] [Google Scholar]
  10. Ivanova-Nikolova T. T., Breitwieser G. E. Effector contributions to G beta gamma-mediated signaling as revealed by muscarinic potassium channel gating. J Gen Physiol. 1997 Feb;109(2):245–253. doi: 10.1085/jgp.109.2.245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Koch W. J., Inglese J., Stone W. C., Lefkowitz R. J. The binding site for the beta gamma subunits of heterotrimeric G proteins on the beta-adrenergic receptor kinase. J Biol Chem. 1993 Apr 15;268(11):8256–8260. [PubMed] [Google Scholar]
  12. Kofuji P., Davidson N., Lester H. A. Evidence that neuronal G-protein-gated inwardly rectifying K+ channels are activated by G beta gamma subunits and function as heteromultimers. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6542–6546. doi: 10.1073/pnas.92.14.6542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kozasa T., Gilman A. G. Purification of recombinant G proteins from Sf9 cells by hexahistidine tagging of associated subunits. Characterization of alpha 12 and inhibition of adenylyl cyclase by alpha z. J Biol Chem. 1995 Jan 27;270(4):1734–1741. doi: 10.1074/jbc.270.4.1734. [DOI] [PubMed] [Google Scholar]
  14. Krapivinsky G., Gordon E. A., Wickman K., Velimirović B., Krapivinsky L., Clapham D. E. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Nature. 1995 Mar 9;374(6518):135–141. doi: 10.1038/374135a0. [DOI] [PubMed] [Google Scholar]
  15. Krapivinsky G., Krapivinsky L., Wickman K., Clapham D. E. G beta gamma binds directly to the G protein-gated K+ channel, IKACh. J Biol Chem. 1995 Dec 8;270(49):29059–29062. doi: 10.1074/jbc.270.49.29059. [DOI] [PubMed] [Google Scholar]
  16. Kubo Y., Baldwin T. J., Jan Y. N., Jan L. Y. Primary structure and functional expression of a mouse inward rectifier potassium channel. Nature. 1993 Mar 11;362(6416):127–133. doi: 10.1038/362127a0. [DOI] [PubMed] [Google Scholar]
  17. Kunkel M. T., Peralta E. G. Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell. 1995 Nov 3;83(3):443–449. doi: 10.1016/0092-8674(95)90122-1. [DOI] [PubMed] [Google Scholar]
  18. Kurachi Y. G protein regulation of cardiac muscarinic potassium channel. Am J Physiol. 1995 Oct;269(4 Pt 1):C821–C830. doi: 10.1152/ajpcell.1995.269.4.C821. [DOI] [PubMed] [Google Scholar]
  19. Nair L. A., Inglese J., Stoffel R., Koch W. J., Lefkowitz R. J., Kwatra M. M., Grant A. O. Cardiac muscarinic potassium channel activity is attenuated by inhibitors of G beta gamma. Circ Res. 1995 May;76(5):832–838. doi: 10.1161/01.res.76.5.832. [DOI] [PubMed] [Google Scholar]
  20. North R. A. Twelfth Gaddum memorial lecture. Drug receptors and the inhibition of nerve cells. Br J Pharmacol. 1989 Sep;98(1):13–28. doi: 10.1111/j.1476-5381.1989.tb16855.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Pessia M., Bond C. T., Kavanaugh M. P., Adelman J. P. Contributions of the C-terminal domain to gating properties of inward rectifier potassium channels. Neuron. 1995 May;14(5):1039–1045. doi: 10.1016/0896-6273(95)90342-9. [DOI] [PubMed] [Google Scholar]
  22. Reuveny E., Slesinger P. A., Inglese J., Morales J. M., Iñiguez-Lluhi J. A., Lefkowitz R. J., Bourne H. R., Jan Y. N., Jan L. Y. Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits. Nature. 1994 Jul 14;370(6485):143–146. doi: 10.1038/370143a0. [DOI] [PubMed] [Google Scholar]
  23. Sakmann B., Noma A., Trautwein W. Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature. 1983 May 19;303(5914):250–253. doi: 10.1038/303250a0. [DOI] [PubMed] [Google Scholar]
  24. Schreibmayer W., Dessauer C. W., Vorobiov D., Gilman A. G., Lester H. A., Davidson N., Dascal N. Inhibition of an inwardly rectifying K+ channel by G-protein alpha-subunits. Nature. 1996 Apr 18;380(6575):624–627. doi: 10.1038/380624a0. [DOI] [PubMed] [Google Scholar]
  25. Schreibmayer W., Lester H. A., Dascal N. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes. Pflugers Arch. 1994 Mar;426(5):453–458. doi: 10.1007/BF00388310. [DOI] [PubMed] [Google Scholar]
  26. Slesinger P. A., Reuveny E., Jan Y. N., Jan L. Y. Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron. 1995 Nov;15(5):1145–1156. doi: 10.1016/0896-6273(95)90102-7. [DOI] [PubMed] [Google Scholar]
  27. Wickman K. D., Iñiguez-Lluhl J. A., Davenport P. A., Taussig R., Krapivinsky G. B., Linder M. E., Gilman A. G., Clapham D. E. Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel. Nature. 1994 Mar 17;368(6468):255–257. doi: 10.1038/368255a0. [DOI] [PubMed] [Google Scholar]
  28. Wickman K., Clapham D. E. Ion channel regulation by G proteins. Physiol Rev. 1995 Oct;75(4):865–885. doi: 10.1152/physrev.1995.75.4.865. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES