Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1994 Mar 1;475(2):267–275. doi: 10.1113/jphysiol.1994.sp020067

Developmental changes in hypoxia-induced catecholamine release from rat carotid body, in vitro.

D F Donnelly 1, T P Doyle 1
PMCID: PMC1160376  PMID: 8021833

Abstract

1. Developmental changes in free tissue catecholamine levels were studied using Nafion-coated, carbon fibre electrodes placed in rat carotid bodies, in vitro. Simultaneously, single fibre chemoreceptor afferent activity was recorded from the sinus nerve. Five age groups were examined: 1, 2, 6, 10 and 20-30 days of age. 2. Using fast-scan voltammetry, similar current peaks were observed during exposure to exogenous dopamine and during superfusion with hypoxic saline. This suggests that changes in carbon fibre electrode current are due to an increase in free tissue catecholamines. 3. Baseline catecholamine levels were significantly less in the 1-6 day age groups compared to 10 day and 20-30 day rats. 4. During 1 min of hypoxia the peak concentration of tissue catecholamine was significantly less in the 1 day compared to the 2 day age groups, and these were less than in 10 day and 20-30 day rats. 5. Peak nerve response during hypoxia increased with age from 4.5 +/- 0.6 Hz in the 1 day to 10.5 +/- 1.6 Hz in the 6 day and to 15.5 +/- 2.2 Hz in the 20-30 day rats. 6. We conclude that (1) resting free tissue catecholamine levels increase with age in the newborn period, (2) hypoxia causes enhanced catecholamine release, and (3) the magnitude of the release increases in the postnatal period as does the nerve activity.

Full text

PDF
270

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baur J. E., Kristensen E. W., May L. J., Wiedemann D. J., Wightman R. M. Fast-scan voltammetry of biogenic amines. Anal Chem. 1988 Jul 1;60(13):1268–1272. doi: 10.1021/ac00164a006. [DOI] [PubMed] [Google Scholar]
  2. Biscoe T. J., Duchen M. R. Responses of type I cells dissociated from the rabbit carotid body to hypoxia. J Physiol. 1990 Sep;428:39–59. doi: 10.1113/jphysiol.1990.sp018199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Donnelly D. F. Electrochemical detection of catecholamine release from rat carotid body in vitro. J Appl Physiol (1985) 1993 May;74(5):2330–2337. doi: 10.1152/jappl.1993.74.5.2330. [DOI] [PubMed] [Google Scholar]
  4. Donnelly D. F., Kholwadwala D. Hypoxia decreases intracellular calcium in adult rat carotid body glomus cells. J Neurophysiol. 1992 Jun;67(6):1543–1551. doi: 10.1152/jn.1992.67.6.1543. [DOI] [PubMed] [Google Scholar]
  5. Donnelly D. F., Smith E. J., Dutton R. E. Neural response of carotid chemoreceptors following dopamine blockade. J Appl Physiol Respir Environ Exerc Physiol. 1981 Jan;50(1):172–177. doi: 10.1152/jappl.1981.50.1.172. [DOI] [PubMed] [Google Scholar]
  6. Eden G. J., Hanson M. A. Maturation of the respiratory response to acute hypoxia in the newborn rat. J Physiol. 1987 Nov;392:1–9. doi: 10.1113/jphysiol.1987.sp016765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fidone S., Gonzalez C., Yoshizaki K. Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol. 1982 Dec;333:93–110. doi: 10.1113/jphysiol.1982.sp014441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Forni C., Nieoullon A. Electrochemical detection of dopamine release in the striatum of freely moving hamsters. Brain Res. 1984 Apr 9;297(1):11–20. doi: 10.1016/0006-8993(84)90538-9. [DOI] [PubMed] [Google Scholar]
  9. González C., Almaraz L., Obeso A., Rigual R. Oxygen and acid chemoreception in the carotid body chemoreceptors. Trends Neurosci. 1992 Apr;15(4):146–153. doi: 10.1016/0166-2236(92)90357-e. [DOI] [PubMed] [Google Scholar]
  10. Hanbauer I., Hellstrom S. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J Physiol. 1978 Sep;282:21–34. doi: 10.1113/jphysiol.1978.sp012445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hellström S., Hanbauer I., Costa E. Selective decrease of dopamine content in rat carotid body during exposure to hypoxic conditions. Brain Res. 1976 Dec 17;118(2):352–355. doi: 10.1016/0006-8993(76)90725-3. [DOI] [PubMed] [Google Scholar]
  12. Hellström S., Koslow S. H. Biogenic amines in carotid body of adult and infant rats--a gas chromatographic-mass spectrometric assay. Acta Physiol Scand. 1975 Apr;93(4):540–547. doi: 10.1111/j.1748-1716.1975.tb05846.x. [DOI] [PubMed] [Google Scholar]
  13. Hertzberg T., Hellström S., Lagercrantz H., Pequignot J. M. Development of the arterial chemoreflex and turnover of carotid body catecholamines in the newborn rat. J Physiol. 1990 Jun;425:211–225. doi: 10.1113/jphysiol.1990.sp018099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawagoe K. T., Jankowski J. A., Wightman R. M. Etched carbon-fiber electrodes as amperometric detectors of catecholamine secretion from isolated biological cells. Anal Chem. 1991 Aug 1;63(15):1589–1594. doi: 10.1021/ac00015a017. [DOI] [PubMed] [Google Scholar]
  15. Kholwadwala D., Donnelly D. F. Maturation of carotid chemoreceptor sensitivity to hypoxia: in vitro studies in the newborn rat. J Physiol. 1992;453:461–473. doi: 10.1113/jphysiol.1992.sp019239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kristensen E. W., Kuhr W. G., Wightman R. M. Temporal characterization of perfluorinated ion exchange coated microvoltammetric electrodes for in vivo use. Anal Chem. 1987 Jul 15;59(14):1752–1757. doi: 10.1021/ac00141a003. [DOI] [PubMed] [Google Scholar]
  17. Lahiri S., Nishino T., Mokashi A., Mulligan E. Interaction of dopamine and haloperidol with O2 and CO2 chemoreception in carotid body. J Appl Physiol Respir Environ Exerc Physiol. 1980 Jul;49(1):45–51. doi: 10.1152/jappl.1980.49.1.45. [DOI] [PubMed] [Google Scholar]
  18. Leitner L. M., Roumy M., Verna A. In vitro recording of chemoreceptor activity in catecholamine-depleted rabbit carotid bodies. Neuroscience. 1983 Nov;10(3):883–891. doi: 10.1016/0306-4522(83)90226-9. [DOI] [PubMed] [Google Scholar]
  19. López-Barneo J., López-López J. R., Ureña J., González C. Chemotransduction in the carotid body: K+ current modulated by PO2 in type I chemoreceptor cells. Science. 1988 Jul 29;241(4865):580–582. doi: 10.1126/science.2456613. [DOI] [PubMed] [Google Scholar]
  20. Ponte J., Sadler C. L. Interactions between hypoxia, acetylcholine and dopamine in the carotid body of rabbit and cat. J Physiol. 1989 Mar;410:395–410. doi: 10.1113/jphysiol.1989.sp017540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Shirahata M., Fitzgerald R. S. The presence of CO2/HCO3- is essential for hypoxic chemotransduction in the in vivo perfused carotid body. Brain Res. 1991 Apr 5;545(1-2):297–300. doi: 10.1016/0006-8993(91)91301-g. [DOI] [PubMed] [Google Scholar]
  22. Ureña J., López-López J., González C., López-Barneo J. Ionic currents in dispersed chemoreceptor cells of the mammalian carotid body. J Gen Physiol. 1989 May;93(5):979–999. doi: 10.1085/jgp.93.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Verna A., Roumy M., Leitner L. M. Loss of chemoreceptive properties of the rabbit carotid body after destruction of the glomus cells. Brain Res. 1975 Dec 12;100(1):13–23. doi: 10.1016/0006-8993(75)90239-5. [DOI] [PubMed] [Google Scholar]
  24. Wightman R. M., Jankowski J. A., Kennedy R. T., Kawagoe K. T., Schroeder T. J., Leszczyszyn D. J., Near J. A., Diliberto E. J., Jr, Viveros O. H. Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10754–10758. doi: 10.1073/pnas.88.23.10754. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. el Ganouni S., Forni C., Nieoullon A. In vitro and in vivo characterization of the properties of a multifiber carbon electrode allowing long-term electrochemical detection of dopamine in freely moving animals. Brain Res. 1987 Feb 24;404(1-2):239–256. doi: 10.1016/0006-8993(87)91375-8. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES