Abstract
1. Unaccustomed eccentric exercise decreases whole-body insulin action in humans. To study the effects of one-legged eccentric exercise on insulin action in muscle and systemically, the euglycaemic clamp technique combined with arterial and bilateral femoral venous catheterization was used. Seven subjects participated in two euglycaemic clamps, performed in random order. One clamp was preceded 2 days earlier by one-legged eccentric exercise (post-eccentric exercise clamp (PEC)) and one was without the prior exercise (control clamp (CC)). 2. During PEC the maximal insulin-stimulated glucose uptake over the eccentric thigh was marginally lower when compared with the control thigh, (11.9%, 64.6 +/- 10.3 vs. 73.3 +/- 10.2 mumol kg-1 min-1, P = 0.08), whereas no inter-thigh difference was observed at a submaximal insulin concentration. The glycogen concentration was lower in the eccentric thigh for all three clamp steps used (P < 0.05). The glucose transporter GLUT4 protein content was on average 39% lower (P < 0.05) in the eccentric thigh in the basal state, whereas the maximal activity of glycogen synthase was identical in the two thighs for all clamp steps. 3. The glucose infusion rate (GIR) necessary to maintain euglycaemia during maximal insulin stimulation was lower during PEC compared with CC (15.7%, 81.3 +/- 3.2 vs. 96.4 +/- 8.8 mumol kg-1 min-1, P < 0.05). 4. Our data show that 2 days after unaccustomed eccentric exercise, muscle and whole-body insulin action is impaired at maximal but not submaximal concentrations. The local effect cannot account for the whole-body effect, suggesting the release of a factor which decreases insulin responsiveness systemically.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen P. H., Lund S., Vestergaard H., Junker S., Kahn B. B., Pedersen O. Expression of the major insulin regulatable glucose transporter (GLUT4) in skeletal muscle of noninsulin-dependent diabetic patients and healthy subjects before and after insulin infusion. J Clin Endocrinol Metab. 1993 Jul;77(1):27–32. doi: 10.1210/jcem.77.1.8325952. [DOI] [PubMed] [Google Scholar]
- Andersen P., Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol. 1985 Sep;366:233–249. doi: 10.1113/jphysiol.1985.sp015794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asp S., Daugaard J. R., Richter E. A. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle. J Physiol. 1995 Feb 1;482(Pt 3):705–712. doi: 10.1113/jphysiol.1995.sp020553. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Asp S., Kristiansen S., Richter E. A. Eccentric muscle damage transiently decreases rat skeletal muscle GLUT-4 protein. J Appl Physiol (1985) 1995 Oct;79(4):1338–1345. doi: 10.1152/jappl.1995.79.4.1338. [DOI] [PubMed] [Google Scholar]
- Bangsbo J., Gollnick P. D., Graham T. E., Saltin B. Substrates for muscle glycogen synthesis in recovery from intense exercise in man. J Physiol. 1991 Mar;434:423–440. doi: 10.1113/jphysiol.1991.sp018478. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogardus C., Thuillez P., Ravussin E., Vasquez B., Narimiga M., Azhar S. Effect of muscle glycogen depletion on in vivo insulin action in man. J Clin Invest. 1983 Nov;72(5):1605–1610. doi: 10.1172/JCI111119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christensen N. J., Vestergaard P., Sørensen T., Rafaelsen O. J. Cerebrospinal fluid adrenaline and noradrenaline in depressed patients. Acta Psychiatr Scand. 1980 Feb;61(2):178–182. doi: 10.1111/j.1600-0447.1980.tb00577.x. [DOI] [PubMed] [Google Scholar]
- Costill D. L., Pascoe D. D., Fink W. J., Robergs R. A., Barr S. I., Pearson D. Impaired muscle glycogen resynthesis after eccentric exercise. J Appl Physiol (1985) 1990 Jul;69(1):46–50. doi: 10.1152/jappl.1990.69.1.46. [DOI] [PubMed] [Google Scholar]
- DeFronzo R. A., Tobin J. D., Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol. 1979 Sep;237(3):E214–E223. doi: 10.1152/ajpendo.1979.237.3.E214. [DOI] [PubMed] [Google Scholar]
- Dela F., Handberg A., Mikines K. J., Vinten J., Galbo H. GLUT 4 and insulin receptor binding and kinase activity in trained human muscle. J Physiol. 1993 Sep;469:615–624. doi: 10.1113/jphysiol.1993.sp019833. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doyle J. A., Sherman W. M., Strauss R. L. Effects of eccentric and concentric exercise on muscle glycogen replenishment. J Appl Physiol (1985) 1993 Apr;74(4):1848–1855. doi: 10.1152/jappl.1993.74.4.1848. [DOI] [PubMed] [Google Scholar]
- Forster J., Morris A. S., Shearer J. D., Mastrofrancesco B., Inman K. C., Lawler R. G., Bowen W., Caldwell M. D. Glucose uptake and flux through phosphofructokinase in wounded rat skeletal muscle. Am J Physiol. 1989 Jun;256(6 Pt 1):E788–E797. doi: 10.1152/ajpendo.1989.256.6.E788. [DOI] [PubMed] [Google Scholar]
- King D. S., Feltmeyer T. L., Baldus P. J., Sharp R. L., Nespor J. Effects of eccentric exercise on insulin secretion and action in humans. J Appl Physiol (1985) 1993 Nov;75(5):2151–2156. doi: 10.1152/jappl.1993.75.5.2151. [DOI] [PubMed] [Google Scholar]
- Kirwan J. P., Bourey R. E., Kohrt W. M., Staten M. A., Holloszy J. O. Effects of treadmill exercise to exhaustion on the insulin response to hyperglycemia in untrained men. J Appl Physiol (1985) 1991 Jan;70(1):246–250. doi: 10.1152/jappl.1991.70.1.246. [DOI] [PubMed] [Google Scholar]
- Kirwan J. P., Hickner R. C., Yarasheski K. E., Kohrt W. M., Wiethop B. V., Holloszy J. O. Eccentric exercise induces transient insulin resistance in healthy individuals. J Appl Physiol (1985) 1992 Jun;72(6):2197–2202. doi: 10.1152/jappl.1992.72.6.2197. [DOI] [PubMed] [Google Scholar]
- Lang C. H., Dobrescu C., Bagby G. J. Tumor necrosis factor impairs insulin action on peripheral glucose disposal and hepatic glucose output. Endocrinology. 1992 Jan;130(1):43–52. doi: 10.1210/endo.130.1.1727716. [DOI] [PubMed] [Google Scholar]
- Mikines K. J., Sonne B., Farrell P. A., Tronier B., Galbo H. Effect of physical exercise on sensitivity and responsiveness to insulin in humans. Am J Physiol. 1988 Mar;254(3 Pt 1):E248–E259. doi: 10.1152/ajpendo.1988.254.3.E248. [DOI] [PubMed] [Google Scholar]
- O'Reilly K. P., Warhol M. J., Fielding R. A., Frontera W. R., Meredith C. N., Evans W. J. Eccentric exercise-induced muscle damage impairs muscle glycogen repletion. J Appl Physiol (1985) 1987 Jul;63(1):252–256. doi: 10.1152/jappl.1987.63.1.252. [DOI] [PubMed] [Google Scholar]
- Richter E. A., Garetto L. P., Goodman M. N., Ruderman N. B. Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J Clin Invest. 1982 Apr;69(4):785–793. doi: 10.1172/JCI110517. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Richter E. A., Mikines K. J., Galbo H., Kiens B. Effect of exercise on insulin action in human skeletal muscle. J Appl Physiol (1985) 1989 Feb;66(2):876–885. doi: 10.1152/jappl.1989.66.2.876. [DOI] [PubMed] [Google Scholar]
- Shearer J. D., Amaral J. F., Caldwell M. D. Glucose metabolism of injured skeletal muscle: the contribution of inflammatory cells. Circ Shock. 1988 Jul;25(3):131–138. [PubMed] [Google Scholar]
- Thomas J. A., Schlender K. K., Larner J. A rapid filter paper assay for UDPglucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP-14C-glucose. Anal Biochem. 1968 Oct 24;25(1):486–499. doi: 10.1016/0003-2697(68)90127-9. [DOI] [PubMed] [Google Scholar]
- Widrick J. J., Costill D. L., McConell G. K., Anderson D. E., Pearson D. R., Zachwieja J. J. Time course of glycogen accumulation after eccentric exercise. J Appl Physiol (1985) 1992 May;72(5):1999–2004. doi: 10.1152/jappl.1992.72.5.1999. [DOI] [PubMed] [Google Scholar]