Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1996 Aug 15;495(Pt 1):227–237. doi: 10.1113/jphysiol.1996.sp021587

The effect of low-dose acetazolamide on the ventilatory CO2 response curve in the anaesthetized cat.

M Wagenaar 1, L Teppema 1, A Berkenbosch 1, C Olievier 1, H Folgering 1
PMCID: PMC1160738  PMID: 8866365

Abstract

1. The effect of 4 mg kg-1 acetazolamide (I.V.) on the slope (S) and intercept on the Pa,CO2 axis (B) of the ventilatory CO2 response curve of anaesthetized cats with intact or denervated carotid bodies was studied using the technique of dynamic end-tidal forcing. 2. This dose did not induce an arterial-to-end-tidal PCO2 (P(a-ET),CO2) gradient, indicating that erythrocytic carbonic anhydrase was not completely inhibited. Within the first 2 h after administration, this small dose caused only a slight decrease in mean standard bicarbonate of 1.8 and 1.7 mmol l-1 in intact (n = 7) and denervated animals (n = 7), respectively. Doses of acetazolamide larger than 4 mg kg-1 (up to 32 mg kg-1) caused a significant increase in the P(a-ET),CO2 gradient. 3. In carotid body-denervated cats, 4 mg kg-1 acetazolamide caused a decrease in the CO2 sensitivity of the central chemoreflex loop (Sc) from 1.52 +/- 0.42 to 0.96 +/- 0.32 l min-1 kPa-1 (mean +/- S.D.) while the intercept on the Pa,CO2 axis (B) decreased from 4.5 +/- 0.5 to 4.2 +/- 0.7 kPa. 4. In carotid body-intact animals, 4 mg kg-1 acetazolamide caused a decrease in the CO2 sensitivity of the peripheral chemoreflex loop (Sp) from 0.28 +/- 0.18 to 0.19 +/- 0.12 l min-1 kPa-1. Se and B decreased from 1.52 +/- 0.55 to 0.84 +/- 0.21 l min-1 kPa-1, and from 4.0 +/- 0.5 to 3.0 +/- 0.6 kPa, respectively, not significantly different from the changes encountered in the denervated animals. 5. It is argued that the effect of acetazolamide on the CO2 sensitivity of the peripheral chemoreflex loop in intact cats may be caused by a direct effect on the carotid bodies. Both in intact and in denervated animals the effects of the drug on Sc and B may not be due to a direct action on the central nervous system, but rather to an effect on cerebral vessels resulting in an altered relationship between brain blood flow and brain tissue PCO2.

Full text

PDF
230

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barclay J. K. Carbonic anhydrase III inhibition in normocapnic and hypercapnic contracting mouse soleus. Can J Physiol Pharmacol. 1987 Jan;65(1):100–104. doi: 10.1139/y87-020. [DOI] [PubMed] [Google Scholar]
  2. Bashir Y., Kann M., Stradling J. R. The effect of acetazolamide on hypercapnic and eucapnic/poikilocapnic hypoxic ventilatory responses in normal subjects. Pulm Pharmacol. 1990;3(3):151–154. doi: 10.1016/0952-0600(90)90046-l. [DOI] [PubMed] [Google Scholar]
  3. Berkenbosch A., Bovill J. G., Dahan A., DeGoede J., Olievier I. C. The ventilatory CO2 sensitivities from Read's rebreathing method and the steady-state method are not equal in man. J Physiol. 1989 Apr;411:367–377. doi: 10.1113/jphysiol.1989.sp017578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berkenbosch A., DeGoede J., Olievier C. N., Ward D. S. Effect of exogenous dopamine on the hypercapnic ventilatory response in cats during normoxia. Pflugers Arch. 1986 Nov;407(5):504–509. doi: 10.1007/BF00657508. [DOI] [PubMed] [Google Scholar]
  5. CAIN S. M., OTIS A. B. Carbon dioxide transport in anesthetized dogs during inhibition of carbonic anhydrase. J Appl Physiol. 1961 Nov;16:1023–1028. doi: 10.1152/jappl.1961.16.6.1023. [DOI] [PubMed] [Google Scholar]
  6. CARTER E. T., CLARK R. T., Jr Respiratory effects of carbonic anhydrase inhibition in the trained unanesthetized dog. J Appl Physiol. 1958 Jul;13(1):42–46. doi: 10.1152/jappl.1958.13.1.42. [DOI] [PubMed] [Google Scholar]
  7. Chiesa A., Stretton T. B., Massoud A. A., Howell J. B. The effects of inhibition of carbonic anhydrase with dichlorphenamide on ventilatory control at rest and on exercise in normal subjects. Clin Sci. 1969 Dec;37(3):689–706. [PubMed] [Google Scholar]
  8. De Goede J., Berkenbosch A., Olievier C. N., Quanjer P. H. Ventilatory response to carbon dioxide and apnoeic thresholds. Respir Physiol. 1981 Aug;45(2):185–199. doi: 10.1016/0034-5687(81)90059-1. [DOI] [PubMed] [Google Scholar]
  9. DeGoede J., Berkenbosch A., Ward D. S., Bellville J. W., Olievier C. N. Comparison of chemoreflex gains obtained with two different methods in cats. J Appl Physiol (1985) 1985 Jul;59(1):170–179. doi: 10.1152/jappl.1985.59.1.170. [DOI] [PubMed] [Google Scholar]
  10. Dodgson S. J., Forster R. E., 2nd Carbonic anhydrase activity of intact erythrocytes from seven mammals. J Appl Physiol Respir Environ Exerc Physiol. 1983 Oct;55(4):1292–1298. doi: 10.1152/jappl.1983.55.4.1292. [DOI] [PubMed] [Google Scholar]
  11. Effros R. M., Chang R. S., Silverman P. Acceleration of plasma bicarbonate conversion to carbon dioxide by pulmonary carbonic anhydrase. Science. 1978 Jan 27;199(4327):427–429. doi: 10.1126/science.413195. [DOI] [PubMed] [Google Scholar]
  12. Hanson M. A., Nye P. C., Torrance R. W. The location of carbonic anhydrase in relation to the blood-brain barrier at the medullary chemoreceptors of the cat. J Physiol. 1981 Nov;320:113–125. doi: 10.1113/jphysiol.1981.sp013938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Holder L. B., Hayes S. L. Diffusion of sulfonamides in aqueous buffers and into red cells. Mol Pharmacol. 1965 Nov;1(3):266–279. [PubMed] [Google Scholar]
  14. Huang S. Y., McCullough R. E., McCullough R. G., Micco A. J., Manco-Johnson M., Weil J. V., Reeves J. T. Usual clinical dose of acetazolamide does not alter cerebral blood flow velocity. Respir Physiol. 1988 Jun;72(3):315–326. doi: 10.1016/0034-5687(88)90090-4. [DOI] [PubMed] [Google Scholar]
  15. LERCHE D., KATSAROS B., LERCHE G., LOESCHCKE H. H. [Comparison of the effect of various acidoses (NH4C1, CaC12, acetazolamide) on pulmonary ventilation in man]. Pflugers Arch Gesamte Physiol Menschen Tiere. 1960;270:450–460. [PubMed] [Google Scholar]
  16. Laux B. E., Raichle M. E. The effect of acetazolamide on cerebral blood flow and oxygen utilization in the rhesus monkey. J Clin Invest. 1978 Sep;62(3):585–592. doi: 10.1172/JCI109164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Linton R. A., Poole-Wilson P. A., Davies R. J., Cameron I. R. A comparison of the ventilatory response to carbon dioxide by steady-state and rebreathing methods during metabolic acidosis and alkalosis. Clin Sci Mol Med. 1973 Aug;45(2):239–249. doi: 10.1042/cs0450239. [DOI] [PubMed] [Google Scholar]
  18. Macri F. J., Politoff A., Rubin R., Dixon R., Rall D. Preferential vasoconstrictor properties of acetazolamide on the arteries of the choroid plexus. Int J Neuropharmacol. 1966 Jan;5(1):109–115. doi: 10.1016/0028-3908(66)90056-6. [DOI] [PubMed] [Google Scholar]
  19. Maren T. H. Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev. 1967 Oct;47(4):595–781. doi: 10.1152/physrev.1967.47.4.595. [DOI] [PubMed] [Google Scholar]
  20. Pontén U., Siesjö B. K. Gradients of CO2 tension in the brain. Acta Physiol Scand. 1966 Jun;67(2):129–140. doi: 10.1111/j.1748-1716.1966.tb03294.x. [DOI] [PubMed] [Google Scholar]
  21. ROTH L. J., SCHOOLAR J. C., BARLOW C. F. Sulfur-35 labeled acetazolamide in cat brain. J Pharmacol Exp Ther. 1959 Feb;125(2):128–136. [PubMed] [Google Scholar]
  22. Read D. J., Leigh J. Blood-brain tissue Pco2 relationships and ventilation during rebreathing. J Appl Physiol. 1967 Jul;23(1):53–70. doi: 10.1152/jappl.1967.23.1.53. [DOI] [PubMed] [Google Scholar]
  23. Ridderstråle Y., Hanson M. Histochemical study of the distribution of carbonic anhydrase in the cat brain. Acta Physiol Scand. 1985 Aug;124(4):557–564. doi: 10.1111/j.1748-1716.1985.tb00048.x. [DOI] [PubMed] [Google Scholar]
  24. Ringelstein E. B., Van Eyck S., Mertens I. Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of CO2 to acetazolamide. J Cereb Blood Flow Metab. 1992 Jan;12(1):162–168. doi: 10.1038/jcbfm.1992.20. [DOI] [PubMed] [Google Scholar]
  25. Scheid P., Siffert W. Effects of inhibiting carbonic anhydrase on isometric contraction of frog skeletal muscle. J Physiol. 1985 Apr;361:91–101. doi: 10.1113/jphysiol.1985.sp015634. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Swenson E. R., Hughes J. M. Effects of acute and chronic acetazolamide on resting ventilation and ventilatory responses in men. J Appl Physiol (1985) 1993 Jan;74(1):230–237. doi: 10.1152/jappl.1993.74.1.230. [DOI] [PubMed] [Google Scholar]
  27. Swenson E. R., Robertson H. T., Hlastala M. P. Effects of carbonic anhydrase inhibition on ventilation-perfusion matching in the dog lung. J Clin Invest. 1993 Aug;92(2):702–709. doi: 10.1172/JCI116640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TRAVIS D. M., WILEY C., NECHAY B. R., MAREN T. H. SELECTIVE RENAL CARBONIC ANHYDRASE INHIBITION WITHOUT RESPIRATORY EFFECT: PHARMACOLOGY OF 2-BENZENESULFONAMIDO-1,3, 4-THIADIAZOLE-5-SULFONAMIDE (CL 11,366). J Pharmacol Exp Ther. 1964 Mar;143:383–394. [PubMed] [Google Scholar]
  29. Teppema L. J., Rochette F., Demedts M. Ventilatory effects of acetazolamide in cats during hypoxemia. J Appl Physiol (1985) 1992 May;72(5):1717–1723. doi: 10.1152/jappl.1992.72.5.1717. [DOI] [PubMed] [Google Scholar]
  30. Teppema L., Berkenbosch A., DeGoede J., Olievier C. Carbonic anhydrase and control of breathing: different effects of benzolamide and methazolamide in the anaesthetized cat. J Physiol. 1995 Nov 1;488(Pt 3):767–777. doi: 10.1113/jphysiol.1995.sp021008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Vorstrup S., Henriksen L., Paulson O. B. Effect of acetazolamide on cerebral blood flow and cerebral metabolic rate for oxygen. J Clin Invest. 1984 Nov;74(5):1634–1639. doi: 10.1172/JCI111579. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES