Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jun 15;180(3):545–549. doi: 10.1042/bj1800545

Tyrosine aminotransferase induction in hepatocytes cultured from rat foetuses treated with dexamethasone in utero.

G C Yeoh, T Arbuckle, I T Oliver
PMCID: PMC1161092  PMID: 39550

Abstract

1. The administration of dexamethasone to foetal rats in utero does not result in the appearance of specific tyrosine aminotransferase activity even after 24 h. 2. When foetal hepatocytes are cultured in vitro from animals treated in utero with dexamethasone, significantly higher activities of specific tyrosine aminotransferase are found than in untreated controls. 3. Dexamethasone in vitro induces specific tyrosine aminotransferase in cells cultured from control animals and the effect is maximal at 10 nM in the culture medium. 4. Actinomycin D at 0.2 microgram/ml in the culture medium completely prevents the induction of activity in vitro. 5. In cultures established from animals treated with dexamethasone in utero, the increase in specific tyrosine aminotransferase activity over the control cultures is only marginally decreased in the presence of actinomycin D. 6. The results can be interpreted to mean that dexamethasone in utero stimulates the transcription of enzyme-specific mRNA, which is not rranslated until a translational block in the foetal liver is removed by the conditions of culture in vitro.

Full text

PDF
549

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baxter J. D., Rousseau G. G., Benson M. C., Garcea R. L., Ito J., Tomkins G. M. Role of DNA and specific cytoplasmic receptors in glucocorticoid action. Proc Natl Acad Sci U S A. 1972 Jul;69(7):1892–1896. doi: 10.1073/pnas.69.7.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cake M. H., Ghisalberti A. V., Oliver I. T. Cytoplasmic binding of dexamethasone and induction of tyrosine aminotransferase in neonatal rat liver. Biochem Biophys Res Commun. 1973 Oct 1;54(3):983–990. doi: 10.1016/0006-291x(73)90791-2. [DOI] [PubMed] [Google Scholar]
  3. Diesterhaft M., Noguchi T., Hargrove J., Thornton C., Granner D. Translation of tyrosine aminotransferase mRNA in a modified reticulocyte system. Biochem Biophys Res Commun. 1977 Dec 21;79(4):1015–1022. doi: 10.1016/0006-291x(77)91106-8. [DOI] [PubMed] [Google Scholar]
  4. Feldman D. Ontogeny of rat hepatic glucocorticoid receptors. Endocrinology. 1974 Nov;95(5):1219–1227. doi: 10.1210/endo-95-5-1219. [DOI] [PubMed] [Google Scholar]
  5. Giannopoulos G. Ontogeny of glucocorticoid receptors in rat liver. J Biol Chem. 1975 Aug 10;250(15):5847–5851. [PubMed] [Google Scholar]
  6. Greengard O., Dewey H. K. Initiation by glucagon of the premature development of tyrosine aminotransferase, serine dehydratase, and glucose-6-phosphatase in fetal rat liver. J Biol Chem. 1967 Jun 25;242(12):2986–2991. [PubMed] [Google Scholar]
  7. Greengard O. The hormonal regulation of enzymes in penatal and postnatal rat liver. Effects of adenosine 3',5'-(cyclic)-monophosphate. Biochem J. 1969 Oct;115(1):19–24. doi: 10.1042/bj1150019. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hinegardner R. T. An improved fluorometric assay for DNA. Anal Biochem. 1971 Jan;39(1):197–201. doi: 10.1016/0003-2697(71)90476-3. [DOI] [PubMed] [Google Scholar]
  9. Holt P. G., Oliver I. T. Factors affecting the premature induction of tyrosine aminotransferase in foetal rat liver. Biochem J. 1968 Jun;108(2):333–338. doi: 10.1042/bj1080333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  11. Lees G. J., Weiner N. An examination of the catalytic properties of several aminotransferases in brain and liver by means of an improved radiometric assay with dinitrophenylhydrazine. J Neurochem. 1975 Sep;25(3):315–322. doi: 10.1111/j.1471-4159.1975.tb06973.x. [DOI] [PubMed] [Google Scholar]
  12. Martin C. E., Cake M. H., Hartmann P. E., Cook I. F. Relationship between foetal corticosteroids, maternal progesterone and parturition in the rat. Acta Endocrinol (Copenh) 1977 Jan;84(1):167–176. doi: 10.1530/acta.0.0840167. [DOI] [PubMed] [Google Scholar]
  13. Miller J. V., Jr, Thompson E. B. Radioactive assay for tyrosine aminotransferase. Anal Biochem. 1972 Jun;47(2):487–494. doi: 10.1016/0003-2697(72)90142-x. [DOI] [PubMed] [Google Scholar]
  14. SERENI F., KENNEY F. T., KRETCHMER N. Factors influencing the development of tyrosine-alpha-ketoglutarate transaminase activity in rat liver. J Biol Chem. 1959 Mar;234(3):609–612. [PubMed] [Google Scholar]
  15. Smith G. J., Pearce P. H., Oliver I. T. A liver factor that interconverts multiple forms of tyrosine aminotransferase. Life Sci. 1975 Feb 1;16(3):437–450. doi: 10.1016/0024-3205(75)90265-9. [DOI] [PubMed] [Google Scholar]
  16. Wicks W. D. Induction of hepatic enzymes by adenosine 3',5'-monophosphate in organ culture. J Biol Chem. 1969 Jul 25;244(14):3941–3950. [PubMed] [Google Scholar]
  17. Yeoh G. C., Bennett F. A., Oliver I. T. Hepatocyte differentiation in culture. Appearance of tyrosine aminotransferase. Biochem J. 1979 Apr 15;180(1):153–160. doi: 10.1042/bj1800153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Yeung D., Stanley R. S., Oliver I. T. Development of gluconeogenesis in neonatal rat liver. Effect of triamcinolone. Biochem J. 1967 Dec;105(3):1219–1227. doi: 10.1042/bj1051219. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES