Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Sep 1;181(3):607–621. doi: 10.1042/bj1810607

Structural studies on the major component of Gladiolus style mucilage, an arabinogalactan-protein.

P A Gleeson, A E Clarke
PMCID: PMC1161200  PMID: 518543

Abstract

The major component of the Gladiolus style mucilage was shown to be an arabinogalactan-protein. The arabinogalactan-protein was isolated from the style extract by affinity chromatography with tridacnin (the galactose-binding lectin from the clam Tridacna maxima) coupled to Sepharose 4B. The isolated arabinogalactan-protein represents 40% of the soluble style extract; it contains 90% (w/w) carbohydrate and 3% protein. The major monosaccharides of the carbohydrate component are galactose and arabinose, in the proportions 6:1. A component with a similar composition was also isolated from the crude extract by precipitation with the beta-glucosyl artifical carbohydrate antigen. The protein moiety of the arabinogalactan-protein remained associated with the carbohydrate after chromatography in urea, and has high contents of serine, glutamic acid, aspartic acid, glycine and alanine. The arabinogalactan-protein is apparently chemically homogeneous; it eluted as a single symmetrical peak from Sepharose 4B, and three fractions collected across the peak were structurally similar. Ultracentrifugal studies showed it to be polydisperse in the mol.wt. range 150 000--400 000. The information obtained from methylation analyses, oxalic acid and enzymic hydrolyses is consistent with a model having a beta 1 leads to 3 galactan backbone, branched through C(O)6 to beta 1 leads to 6 galactan side chains. The arabinose is exclusively present as terminal alpha-L-arabinofuranosyl residues. Enzymic removal of the arabinose residues resulted in a marked decrease in solubility of the molecule. The localization of the arabinogalactan-protein in the mucilage of the style canal was demonstrated cytochemically. The possible roles of the arabinogalactan-protein in relation to recognition of compatible pollen and pollen-tube growth are discussed.

Full text

PDF
617

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen A. K., Desai N. N., Neuberger A., Creeth J. M. Properties of potato lectin and the nature of its glycoprotein linkages. Biochem J. 1978 Jun 1;171(3):665–674. doi: 10.1042/bj1710665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aspinall G. O. Gums and mucilages. Adv Carbohydr Chem Biochem. 1969;24:333–379. doi: 10.1016/s0065-2318(08)60353-4. [DOI] [PubMed] [Google Scholar]
  3. Baldo B. A., Uhlenbruck G. Tridacnin, a potent anti-galactan precipitin from the hemolymph of Tridacna maxima (Röding). Adv Exp Med Biol. 1975;64:3–11. doi: 10.1007/978-1-4684-3261-9_1. [DOI] [PubMed] [Google Scholar]
  4. Barker H. A. Biochemical functions of corrinoid compounds. The sixth Hopkins memorial lecture. Biochem J. 1967 Oct;105(1):1–15. doi: 10.1042/bj1050001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  6. Clarke A. E., Knox R. B., Jermyn M. A. Localization of lectins in legume cotyledons. J Cell Sci. 1975 Oct;19(1):157–167. doi: 10.1242/jcs.19.1.157. [DOI] [PubMed] [Google Scholar]
  7. Fincher G. B., Sawyer W. H., Stone B. A. Chemical and physical properties of an arabinogalactan-peptide from wheat endosperm. Biochem J. 1974 Jun;139(3):535–545. doi: 10.1042/bj1390535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gleeson P. A., Jermyn M. A., Clarke A. E. Isolation of an arabinogalactan protein by lectin affinity chromatography on tridacnin-sepharose 4B. Anal Biochem. 1979 Jan 1;92(1):41–45. doi: 10.1016/0003-2697(79)90622-5. [DOI] [PubMed] [Google Scholar]
  9. HAKOMORI S. A RAPID PERMETHYLATION OF GLYCOLIPID, AND POLYSACCHARIDE CATALYZED BY METHYLSULFINYL CARBANION IN DIMETHYL SULFOXIDE. J Biochem. 1964 Feb;55:205–208. [PubMed] [Google Scholar]
  10. Labarca C., Loewus F. The Nutritional Role of Pistil Exudate in Pollen Tube Wall Formation in Lilium longiflorum: I. Utilization of Injected Stigmatic Exudate. Plant Physiol. 1972 Jul;50(1):7–14. doi: 10.1104/pp.50.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Labarca C., Loewus F. The Nutritional Role of Pistil Exudate in Pollen Tube Wall Formation in Lilium longiflorum: II. Production and Utilization of Exudate from Stigma and Stylar Canal. Plant Physiol. 1973 Aug;52(2):87–92. doi: 10.1104/pp.52.2.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lamport D. T., Katona L., Roerig S. Galactosylserine in extensin. Biochem J. 1973 May;133(1):125–132. doi: 10.1042/bj1330125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindberg B., Lönngren J., Thompson J. L. Structural studies of the Klebsiella type 9 capsular polysaccharide. Carbohydr Res. 1972 Nov;25(1):49–57. doi: 10.1016/s0008-6215(00)82745-7. [DOI] [PubMed] [Google Scholar]
  14. Miller D. H., Lamport D. T., Miller M. Hydroxyproline heterooligosaccharides in Chlamydomonas. Science. 1972 May 26;176(4037):918–920. doi: 10.1126/science.176.4037.918. [DOI] [PubMed] [Google Scholar]
  15. PUSZTAI A., MORGAN W. T. STUDIES IN IMMUNOCHEMISTRY. 22. THE AMINO ACID COMPOSITION OF THE HUMAN BLOOD-GROUP A, B, H AND LE-A SPECIFIC SUBSTANCES. Biochem J. 1963 Sep;88:546–555. doi: 10.1042/bj0880546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pope D. G. Relationships between Hydroxyproline-containing Proteins Secreted into the Cell Wall and Medium by Suspension-cultured Acer pseudoplatanus Cells. Plant Physiol. 1977 May;59(5):894–900. doi: 10.1104/pp.59.5.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. SMOGYI M. Notes on sugar determination. J Biol Chem. 1952 Mar;195(1):19–23. [PubMed] [Google Scholar]
  18. TREVELYAN W. E., PROCTER D. P., HARRISON J. S. Detection of sugars on paper chromatograms. Nature. 1950 Sep 9;166(4219):444–445. doi: 10.1038/166444b0. [DOI] [PubMed] [Google Scholar]
  19. YARIV J., RAPPORT M. M., GRAF L. The interaction of glycosides and saccharides with antibody to the corresponding phenylazo glycosides. Biochem J. 1962 Nov;85:383–388. doi: 10.1042/bj0850383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES