Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1979 Jul 15;182(1):195–202. doi: 10.1042/bj1820195

Proteolysis of the products of mitochondrial protein synthesis in yeast mitochondria and submitochondrial particles.

S L Kalnov, L A Novikova, A S Zubatov, V N Luzikov
PMCID: PMC1161249  PMID: 387030

Abstract

Degradation of mitochondrial translation products in Saccharomyces cerevisiae mitochondria was studied by selectively labelling these entities in vivo in the presence of cycloheximide and following their fate in isolated mitochondria. One-third to one-half of the mitochondrial translation products are shown to be degraded, depending on the culture growth phase, with an approximate half-life of 35 min. This process is shown to be ATP-dependent, enhanced in the presence of puromycin and inhibited by chloramphenicol. Further, the proteolysis is suppressed by detergents and is insensitive to antisera against yeast proteinases A and B when measured in mitochondria or 'inside-out' submitochondrial particles. It is concluded that the breakdown of mitochondrial translation products is most probably due to the action of endogenous proteinase(s) associated with the mitochondrial inner membrane. This proteinase is inhibited by phenylmethanesulphonyl fluoride, leupeptin, antipain and chymostatin.

Full text

PDF
197

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBERTI K. G., BARTLEY W. FURTHER OBSERVATIONS ON THE PRODUCTION OF AMINO ACIDS BY RAT-LIVER MITOCHONDRIA AND OTHER SUBCELLULAR FRACTIONS. Biochem J. 1965 Jun;95:641–656. doi: 10.1042/bj0950641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alberti K. G., Bartley W. The localization of proteolytic activity in rat liver mitochondria and its relation to mitochondrial swelling and aging. Biochem J. 1969 Mar;111(5):763–776. doi: 10.1042/bj1110763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aoki Y., Urata G., Takaku F., Katunuma N. A new protease inactivating delta-aminolevulinic acid synthetase in mitochondria of human bone marrow cells. Biochem Biophys Res Commun. 1975 Jul 22;65(2):567–574. doi: 10.1016/s0006-291x(75)80184-7. [DOI] [PubMed] [Google Scholar]
  4. Bailey E., Taylor C. B., Bartley W. Turnover of mitochondrial components of normal and essential fatty acid-deficient rats. Biochem J. 1967 Sep;104(3):1026–1032. doi: 10.1042/bj1041026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bakalkin G. Y., Kalnov S. L., Galkin A. V., Zubatov A. S., Luzikov V. N. The lability of the products of mitochondrial protein synthesis in Saccharomyces cerevisiae. A novel method for protein half-life determination. Biochem J. 1978 Mar 15;170(3):569–576. doi: 10.1042/bj1700569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bertrand H., Werner S. Deficiency of subunit two of cytochrome oxidase in the mi-3 cytoplasmic mutant of Neurospora crassa. Eur J Biochem. 1977 Oct 3;79(2):599–606. doi: 10.1111/j.1432-1033.1977.tb11844.x. [DOI] [PubMed] [Google Scholar]
  7. Betz H., Hinze H., Holzer H. Isolation and properties of two inhibitors of proteinase B from yeast. J Biol Chem. 1974 Jul 25;249(14):4515–4521. [PubMed] [Google Scholar]
  8. Ebner E., Mason T. L., Schatz G. Mitochondrial assembly in respiration-deficient mutants of Saccharomyces cerevisiae. II. Effect of nuclear and extrachromosomal mutations on the formation of cytochrome c oxidase. J Biol Chem. 1973 Aug 10;248(15):5369–5378. [PubMed] [Google Scholar]
  9. Gear A. R., Albert A. D., Bednarek J. M. The effect of the hypocholesterolemic drug clofibrate on liver mitochondrial biogenesis. A role for neutral mitochondrial proteases. J Biol Chem. 1974 Oct 25;249(20):6495–6504. [PubMed] [Google Scholar]
  10. Grisolia S., Rivas J., Wallace R., Mendelson J. Inhibition of proteolysis of cytosol proteins by lysosomal proteases and of mitochondria of rat liver by antibiotics. Biochem Biophys Res Commun. 1977 Jul 11;77(1):367–373. doi: 10.1016/s0006-291x(77)80206-4. [DOI] [PubMed] [Google Scholar]
  11. Haas R., Nagasawa T., Heinrich P. C. The localization of a proteinase within rat liver mitochondria. Biochem Biophys Res Commun. 1977 Feb 7;74(3):1060–1065. doi: 10.1016/0006-291x(77)91625-4. [DOI] [PubMed] [Google Scholar]
  12. Hare J. F. A novel proteinase associated with mitochondrial membranes. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1206–1215. doi: 10.1016/0006-291x(78)91523-1. [DOI] [PubMed] [Google Scholar]
  13. Hochberg A. A., Zahlten R. N., Stratman F. W., Lardy H. A. Incorporation of L-(methyl- 14 C)- and ( 35 S)methionine into mitochondrial proteins. Biochemistry. 1972 Aug 15;11(17):3143–3149. doi: 10.1021/bi00767a001. [DOI] [PubMed] [Google Scholar]
  14. Holzer H., Betz H., Ebner E. Intracellular proteinases in microorganisms. Curr Top Cell Regul. 1975;9:103–156. doi: 10.1016/b978-0-12-152809-6.50011-1. [DOI] [PubMed] [Google Scholar]
  15. Jusic M., Seifert S., Weiss E., Haas R., Heinrich P. C. Isolation and characterization of a membrane-bound proteinase from rat liver. Arch Biochem Biophys. 1976 Dec;177(2):355–363. doi: 10.1016/0003-9861(76)90449-5. [DOI] [PubMed] [Google Scholar]
  16. Jusić M., Hinze H., Holzer H. Inactivation of yeast enzymes by proteinase A and B and carboxypeptidase Y from yeast. Hoppe Seylers Z Physiol Chem. 1976 May;357(5):735–740. doi: 10.1515/bchm2.1976.357.1.735. [DOI] [PubMed] [Google Scholar]
  17. Katunuma N., Kominami E., Kobayashi K., Banno Y., Suzuki K. Studies on new intracellular proteases in various organs of rat. 1. Purification and comparison of their properties. Eur J Biochem. 1975 Mar 3;52(1):37–50. doi: 10.1111/j.1432-1033.1975.tb03970.x. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Lenney J. F. Three yeast proteins that specifically inhibit yeast proteases A, B, and C. J Bacteriol. 1975 Jun;122(3):1265–1273. doi: 10.1128/jb.122.3.1265-1273.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Luzikov V. N., Zubatov A. S., Rainina E. I., Bakeyeva L. E. Degradation and restoration of mitochondria upon deaeration and subsequent aeration of aerobically grown Saccharomyces cerevisiae cells. Biochim Biophys Acta. 1971 Sep 7;245(2):321–334. doi: 10.1016/0005-2728(71)90151-4. [DOI] [PubMed] [Google Scholar]
  21. Matile P., Wiemken A. The vacuole as the lysosome of the yeast cell. Arch Mikrobiol. 1967 Feb 20;56(2):148–155. doi: 10.1007/BF00408765. [DOI] [PubMed] [Google Scholar]
  22. Michel R., Liebl A., Hartmann A., Neupert W. Action of intracellular proteinases on mitochondrial translation products of Neurospora crassa Schizosaccharomyces pombe. Hoppe Seylers Z Physiol Chem. 1976 Mar;357(3):415–426. doi: 10.1515/bchm2.1976.357.1.415. [DOI] [PubMed] [Google Scholar]
  23. Racker E., Horstman L. L. Partial resolution of the enzymes catalyzing oxidative phosphorylation. 13. Structure and function of submitochondrial particles completely resolved with respect to coupling factor. J Biol Chem. 1967 May 25;242(10):2547–2551. [PubMed] [Google Scholar]
  24. Rajwade M. S., Katyare S. S., Fatterpaker P., Sreenivasan A. Regulation of mitochondrial protein turnover by thyroid hormone(s). Biochem J. 1975 Nov;152(2):379–387. doi: 10.1042/bj1520379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. SOMLO M. [L-lactic dehydrogenase in aerobic yeast. Comparison of the properties of the bound enzyme and the soluble enzyme]. Biochim Biophys Acta. 1962 Dec 4;65:333–346. doi: 10.1016/0006-3002(62)91052-1. [DOI] [PubMed] [Google Scholar]
  26. Saheki T., Holzer H. Proteolytic activities in yeast. Biochim Biophys Acta. 1975 Mar 28;384(1):203–214. doi: 10.1016/0005-2744(75)90109-6. [DOI] [PubMed] [Google Scholar]
  27. Tzagoloff A. Assembly of the mitochondrial membrane system. I. Characterization of some enzymes of the inner membrane of yeast mitochondria. J Biol Chem. 1969 Sep 25;244(18):5020–5026. [PubMed] [Google Scholar]
  28. Tzagoloff A. Assembly of the mitochondrial membrane system. IV. Role of mitochondrial and cytoplasmic protein synthesis in the biosynthesis of the rutamycin-sensitive adenosine triphosphatase. J Biol Chem. 1971 May 10;246(9):3050–3056. [PubMed] [Google Scholar]
  29. Ulane R. E., Cabib E. The activating system of chitin synthetase from Saccharomyces cerevisiae. Purification and properties of the activating factor. J Biol Chem. 1976 Jun 10;251(11):3367–3374. [PubMed] [Google Scholar]
  30. Umezawa H. Chemistry of enzyme inhibitors of microbial origin. Pure Appl Chem. 1973;33(1):129–144. doi: 10.1351/pac197333010129. [DOI] [PubMed] [Google Scholar]
  31. Umezawa H. Protease inhibitors produced by microorganisms. Acta Biol Med Ger. 1977;36(11-12):1899–1915. [PubMed] [Google Scholar]
  32. Wheeldon L. W., Dianoux A. C., Bof M., Vignais P. V. Stable and labile products of mitochondrial protein synthesis in vitro. Eur J Biochem. 1974 Jul 1;46(1):189–199. doi: 10.1111/j.1432-1033.1974.tb03611.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES