Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Jan 15;186(1):135–144. doi: 10.1042/bj1860135

2-Oxocarboxylic acids and function of pancreatic islets in obese–hyperglycaemic mice. Insulin secretion in relation to 45Ca uptake and metabolism

Sigurd Lenzen 1, Uwe Panten 1
PMCID: PMC1161512  PMID: 6989358

Abstract

The effects of aliphatic 2-oxocarboxylic acids, at concentrations of up to 40mm, on the function of pancreatic islets from ob/ob (obese–hyperglycaemic) mice were investigated. 1. 2-Oxopentanoate, dl-3-methyl-2-oxopentanoate, 4-methyl-2-oxopentanoate and 2-oxohexanoate all induced insulin release by isolated incubated islets and a biphasic insulin-secretory pattern in perfused mouse pancreas. The last two substances were similar in potency to glucose. Pyruvate, 2-oxobutyrate, 3-methyl-2-oxobutyrate and 2-oxo-octanoate did not induce insulin release significantly. 2. 2-Oxocarboxylic acids with significant insulin-secretory potency also induced significant 45Ca uptake by isolated incubated islets. 3. The rates of decarboxylation of [1-14C]pyruvate, 3-methyl-2-oxo[1-14C]butyrate and 4-methyl-2-oxo[1-14C]pentanoate were twice as high as the rates of oxidation of the corresponding U-14C-labelled compounds. However, whereas the rates of metabolism of labelled pyruvate and 3-methyl-2-oxobutyrate steadily increased over the concentration range 1–40mm, those of labelled 4-methyl-2-oxopentanoate and d-[U-14C]glucose levelled off at concentrations above 10mm. 4. Omission of 40CaCl2 from the incubation medium reduced the rate of oxidation of the insulin secretagogue [U-14C]4-methyl-2-oxopentanoate, but left that of the non-(insulin secretagogue) [U-14C]3-methyl-2-oxobutyrate unaffected. 5. Only glucose, and not pyruvate, 3-methyl-2-oxobutyrate and 4-methyl-2-oxopentanoate, significantly inhibited oxidation of endogenous fatty acids. 6. It is suggested that stimulus–secretion coupling and the resulting exocytosis of insulin in pancreatic β-cells may modulate both fuel oxidation and 45Ca uptake.

Full text

PDF
142

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ashcroft S. J., Hedeskov C. J., Randle P. J. Glucose metabolism in mouse pancreatic islets. Biochem J. 1970 Jun;118(1):143–154. doi: 10.1042/bj1180143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berne C. The metabolism of lipids in mouse pancreatic islets. The oxidation of fatty acids and ketone bodies. Biochem J. 1975 Dec;152(3):661–666. doi: 10.1042/bj1520661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernstein R. M., Davis B. M., Olefsky J. M., Reaven G. M. Hepatic insulin responsiveness in patients with endogenous hypertriglyceridaemia. Diabetologia. 1978 Apr;14(4):249–253. doi: 10.1007/BF01219424. [DOI] [PubMed] [Google Scholar]
  4. Billington D., Osmundsen H., Sherratt H. S. Mechanisms of the metabolic disturbances caused by hypoglycin and by pent-4-enoic acid. In vitro studies. Biochem Pharmacol. 1978;27(24):2879–2890. doi: 10.1016/0006-2952(78)90204-6. [DOI] [PubMed] [Google Scholar]
  5. Bowden J. A., Connelly J. L. Branched chain alpha-keto acid metabolism. II. Evidence for the common identity of alpha-ketoisocaproic acid and alpha-keto-beta-methyl-valeric acid dehydrogenases. J Biol Chem. 1968 Jun 25;243(12):3526–3531. [PubMed] [Google Scholar]
  6. Coore H. G., Randle P. J. Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem J. 1964 Oct;93(1):66–78. doi: 10.1042/bj0930066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grodsky G. M. A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest. 1972 Aug;51(8):2047–2059. doi: 10.1172/JCI107011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gunnarsson R., Hellerström C. Acute effects of alloxan on the metabolism and insulin secretion of the pancreatic B-cell. Horm Metab Res. 1973 Nov;5(6):404–409. doi: 10.1055/s-0028-1093913. [DOI] [PubMed] [Google Scholar]
  9. Hedeskov C. J., Hertz L., Nissen C. The effect of mannoheptulose on glucose- and pyruvate-stimulated oxygen uptake in normal mouse pancreatic islets. Biochim Biophys Acta. 1971 Feb 28;261(2):388–397. doi: 10.1016/0304-4165(72)90063-3. [DOI] [PubMed] [Google Scholar]
  10. Hellman B., Idahl L. A., Lenzen S., Sehlin J., Täljedal I. B. Further studies on the relationship between insulin release and lanthanum-nondisplaceable 45Ca2+ uptake by pancreatic islets: effects of fructose and starvation. Endocrinology. 1978 Jun;102(6):1856–1863. doi: 10.1210/endo-102-6-1856. [DOI] [PubMed] [Google Scholar]
  11. Hellman B., Idahl L. A., Lernmark A., Sehlin J., Täljedal I. B. The pancreatic beta-cell recognition of insulin secretagogues. Effects of calcium and sodium on glucose metabolism and insulin release. Biochem J. 1974 Jan;138(1):33–45. doi: 10.1042/bj1380033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hellman B., Sehlin J., Täljedal I. B. Effects of glucose and other modifiers of insulin release on the oxidative metabolism of amino acids in micro-dissected pancreatic islets. Biochem J. 1971 Jul;123(4):513–521. doi: 10.1042/bj1230513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hellman B., Sehlin J., Täljedal I. B. Effects of glucose on 45Ca2+ uptake by pancreatic islets as studied with the lanthanum method. J Physiol. 1976 Jan;254(3):639–656. doi: 10.1113/jphysiol.1976.sp011250. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hellman B. Studies in obese-hyperglycemic mice. Ann N Y Acad Sci. 1965 Oct 8;131(1):541–558. doi: 10.1111/j.1749-6632.1965.tb34819.x. [DOI] [PubMed] [Google Scholar]
  15. Henquin J. C. Relative importance of extracellular and intracellular calcium for the two phases of glucose-stimulated insulin release: studies with theophylline. Endocrinology. 1978 Mar;102(3):723–730. doi: 10.1210/endo-102-3-723. [DOI] [PubMed] [Google Scholar]
  16. Jain K., Asina S., Logothetopoulos J. Stimulation of proinsulin biosynthesis and insulin release by pyruvate and lactate. Biochem J. 1978 Oct 15;176(1):31–37. doi: 10.1042/bj1760031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Johnson W. A., Connelly J. L. Cellular localization and characterization of bovine liver branched-chain -keto acid dehydrogenases. Biochemistry. 1972 May 9;11(10):1967–1973. doi: 10.1021/bi00760a036. [DOI] [PubMed] [Google Scholar]
  18. Lenzen S. Effects of alpha-ketocarboxylic acids and 4-pentenoic acid on insulin secretion from the perfused rat pancreas. Biochem Pharmacol. 1978 May 1;27(9):1321–1324. doi: 10.1016/0006-2952(78)90114-4. [DOI] [PubMed] [Google Scholar]
  19. Lenzen S. Insulin secretion by isolated perfused rat and mouse pancreas. Am J Physiol. 1979 Apr;236(4):E391–E400. doi: 10.1152/ajpendo.1979.236.4.E391. [DOI] [PubMed] [Google Scholar]
  20. Lenzen S., Joost H. G., Hasselblatt A. The inhibition of insulin secretion from the perfused rat pancreas after thyroxine treatment. Diabetologia. 1976 Oct;12(5):495–500. doi: 10.1007/BF01219514. [DOI] [PubMed] [Google Scholar]
  21. Lenzen S., Panten U., Hasselblatt A. Thyroxine treatment and insulin secretion in the rat. Diabetologia. 1975 Feb;11(1):49–55. doi: 10.1007/BF00422818. [DOI] [PubMed] [Google Scholar]
  22. Lin B. J., Haist R. E. Respiration and insulin synthesis in the islets of Langerhans. Can J Physiol Pharmacol. 1971 Jun;49(6):559–567. doi: 10.1139/y71-072. [DOI] [PubMed] [Google Scholar]
  23. Malaisse W. J., Sener A., Herchuelz A., Hutton J. C. Insulin release: the fuel hypothesis. Metabolism. 1979 Apr;28(4):373–386. doi: 10.1016/0026-0495(79)90111-2. [DOI] [PubMed] [Google Scholar]
  24. Panten U., Christians J., von Kriegstein E., Poser W., Hasselblatt A. Studies on the mechanism of L-leucine-and alpha-ketoisocaproic acid-induced insulin release from perifused isolated pancreatic islets. Diabetologia. 1974 Apr;10(2):149–154. doi: 10.1007/BF01219672. [DOI] [PubMed] [Google Scholar]
  25. Panten U. Effects of alpha-ketomonocarboxylic acids upon insulin secretion and metabolism of isolated pancreatic islets. Naunyn Schmiedebergs Arch Pharmacol. 1975;291(4):405–420. doi: 10.1007/BF00501798. [DOI] [PubMed] [Google Scholar]
  26. Panten U., Kriegstein E. v., Poser W., Schönborn J., Hasselblatt A. Effects of L-leucine and alpha-ketoisocaproic acid upon insulin secretion and metabolism of isolated pancreatic islets. FEBS Lett. 1972 Feb 1;20(2):225–228. doi: 10.1016/0014-5793(72)80801-9. [DOI] [PubMed] [Google Scholar]
  27. Parker P. J., Randle P. J. Partial purification and properties of branched-chain 2-oxo acid dehydrogenase of ox liver. Biochem J. 1978 Jun 1;171(3):751–757. doi: 10.1042/bj1710751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rüdiger H. W., Langenbeck U., Goedde H. W. A simplified method for the preparation of 14 C-labelled branched-chain -oxo acids. Biochem J. 1972 Jan;126(2):445–446. doi: 10.1042/bj1260445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sener A., Kawazu S., Hutton J. C., Boschero A. C., Devis G., Somers G., Herchuelz A., Malaisse W. J. The stimulus-secretion coupling of glucose-induced insulin release. Effect of exogenous pyruvate on islet function. Biochem J. 1978 Oct 15;176(1):217–232. doi: 10.1042/bj1760217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zaharko D. S., Beck L. V. Studies of a simplified plasma insulin immunoassaay using cellulose powder. Diabetes. 1968 Jul;17(7):444–459. doi: 10.2337/diab.17.7.444. [DOI] [PubMed] [Google Scholar]
  31. Zawalich W. S. Intermediary metabolism and insulin secretion from isolated rat islets of Langerhans. Diabetes. 1979 Mar;28(3):252–262. doi: 10.2337/diab.28.3.252. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES