Abstract
Several measures of energy conservation, namely ADP/O ratio, P/O ratio, ATP/O ratio and phosphorylation detected by continuous assay with purified firefly luciferase and luciferin, all show phosphorylation can occur with mung-bean mitochondria at cyanide concentrations sufficient to inhibit the cytochrome oxidase system. Phosphorylation in the presence of cyanide is uncoupler- oligomycin- and salicylhydroxamate-sensitive. The participation of phosphorylation site 1 is excluded, phosphorylation being attributable to a single phosphorylation site associated with the cyanide-insensitive oxidase. The cyanide-insensitive oxidase has also been shown to support a variety of other energy-linked functions, namely, Ca2+ uptake, reversed electron transport and the maintenance of a membrane potential detected by the dye probes 8-anilinonaphthalene-1-sulphonate and safranine. High concentrations of cyanide have uncoupler-like activity, decreasing the ADP/O ratio and the t 1/2 for the decay of a pH pulse through the the mitochondrial membrane. This uncoupler-like effect is most marked with aged mitochondria. The observations of energy conservation attributable to the cyanide-insensitive oxidase are compared with other reports where it is concluded that the alternative oxidase is uncoupled.
Full text
PDF![349](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/e07c7c324e0f/biochemj00416-0124.png)
![350](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/21b617b0c92b/biochemj00416-0125.png)
![351](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/2b585428a55f/biochemj00416-0126.png)
![352](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/f697a1a0c862/biochemj00416-0127.png)
![353](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/65b4484a41a8/biochemj00416-0128.png)
![354](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/73c351ed8642/biochemj00416-0129.png)
![355](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/f7909293a64e/biochemj00416-0130.png)
![356](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/61439ffc62a1/biochemj00416-0131.png)
![357](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/427df6a48ae3/biochemj00416-0132.png)
![358](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/a339763fed14/biochemj00416-0133.png)
![359](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/0c365457e624/biochemj00416-0134.png)
![360](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/201c/1162100/f99f522aa384/biochemj00416-0135.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akerman K. E., Wikström M. K. Safranine as a probe of the mitochondrial membrane potential. FEBS Lett. 1976 Oct 1;68(2):191–197. doi: 10.1016/0014-5793(76)80434-6. [DOI] [PubMed] [Google Scholar]
- Akimenko V. K., Golovchenko N. P., Medentsev A. G. The absence of energy conservation coupled with electron transfer via the alternative pathway in cyanide-resistant yeast mitochondria. Biochim Biophys Acta. 1979 Mar 15;545(3):398–403. doi: 10.1016/0005-2728(79)90148-8. [DOI] [PubMed] [Google Scholar]
- Azzi A., Chance B., Radda G. K., Lee C. P. A fluorescence probe of energy-dependent structure changes in fragmented membranes. Proc Natl Acad Sci U S A. 1969 Feb;62(2):612–619. doi: 10.1073/pnas.62.2.612. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bendall D. S., Bonner W. D. Cyanide-insensitive Respiration in Plant Mitochondria. Plant Physiol. 1971 Feb;47(2):236–245. doi: 10.1104/pp.47.2.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawson A. P., Gains N. Energy conservation in arum spadix mitochondria. FEBS Lett. 1969 Aug;4(3):164–166. doi: 10.1016/0014-5793(69)80224-3. [DOI] [PubMed] [Google Scholar]
- Doussière J., Sainsard-Chanet A., Vignais P. V. The respiratory chain of Paramecium tetraurelia in wild type and the mutant Cl1. II. Cyanide-insensitive respiration. Function and regulation. Biochim Biophys Acta. 1979 Nov 8;548(2):236–252. doi: 10.1016/0005-2728(79)90132-4. [DOI] [PubMed] [Google Scholar]
- Ferguson S. J., Lloyd W. J., Radda G. K. On the nature of the energised state of submitochondrial particles; investigations with N-aryl naphthalene sulphonate probes. Biochim Biophys Acta. 1976 Feb 16;423(2):174–188. doi: 10.1016/0005-2728(76)90176-6. [DOI] [PubMed] [Google Scholar]
- HACKETT D. P., RICE B., SCHMID C. The partial dissociation of phosphorylation from oxidation in plant mitochondria by respiratory chain inhibitors. J Biol Chem. 1960 Jul;235:2140–2144. [PubMed] [Google Scholar]
- Henry M. F., Nyns E. D. Cyanide-insensitive respiration. An alternative mitochondrial pathway. Subcell Biochem. 1975 Mar;4(1):1–65. [PubMed] [Google Scholar]
- Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. I. Isolation and Some Characteristics of Tightly-coupled Mitochondria from Dark-grown Mung Bean Hypocotyls. Plant Physiol. 1967 Jan;42(1):67–75. doi: 10.1104/pp.42.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ikuma H., Bonner W. D. Properties of Higher Plant Mitochondria. III. Effects of Respiratory Inhibitors. Plant Physiol. 1967 Nov;42(11):1535–1544. doi: 10.1104/pp.42.11.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lawford H. G., Garland P. B. Proton translocation coupled to quinol oxidation in ox heart mitochondria. Biochem J. 1973 Nov;136(3):711–720. doi: 10.1042/bj1360711. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lemasters J. J., Hackenbrock C. E. Adenosine triphosphate: continuous measurement in mitochondrial suspension by firefly luciferase luminescence. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1262–1270. doi: 10.1016/s0006-291x(73)80030-0. [DOI] [PubMed] [Google Scholar]
- Mitchell P., Moyle J. Acid-base titration across the membrane system of rat-liver mitochondria. Catalysis by uncouplers. Biochem J. 1967 Aug;104(2):588–600. doi: 10.1042/bj1040588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore A. L., Bonner W. D., Jr, Rich P. R. The determination of the proton-motive force during cyanide-insensitive respiration in plant mitochondria. Arch Biochem Biophys. 1978 Mar;186(2):298–306. doi: 10.1016/0003-9861(78)90439-3. [DOI] [PubMed] [Google Scholar]
- Schonbaum G. R., Bonner W. D., Jr, Storey B. T., Bahr J. T. Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids. Plant Physiol. 1971 Jan;47(1):124–128. doi: 10.1104/pp.47.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storey B. T., Bahr J. T. The respiratory chain of plant mitochondria. II. Oxidative phosphorylation in skunk cabbage mitochondria. Plant Physiol. 1969 Jan;44(1):126–134. doi: 10.1104/pp.44.1.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Taggart W. V., Sanadi D. R. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles. Biochim Biophys Acta. 1972 Jun 23;267(3):439–443. doi: 10.1016/0005-2728(72)90171-5. [DOI] [PubMed] [Google Scholar]
- Wilson S. B., Bonner W. D. Energy-linked Functions of Submitochondrial Particles Prepared from Mung Bean Mitochondria. Plant Physiol. 1970 Jul;46(1):31–35. doi: 10.1104/pp.46.1.31. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson S. B. Cyanide-insensitive oxidation of ascorbate + NNN'N'-tetramethyl-p-phenylenediamine mixture by mung-bean (Phaseolus aureus) mitochondria. An energy-linked function. Biochem J. 1978 Oct 15;176(1):129–136. doi: 10.1042/bj1760129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson S. B. Energy conservation associated with cyanide-insensitive respiration in plant mitochondria. Biochim Biophys Acta. 1970 Dec 8;223(2):383–387. doi: 10.1016/0005-2728(70)90195-7. [DOI] [PubMed] [Google Scholar]
- Wilson S. B. Energy conservation in isolated mung-bean (Phaseolus aureus L.) mitochondria in the presence of cyanide [proceedings]. Biochem Soc Trans. 1977;5(5):1508–1509. doi: 10.1042/bst0051508. [DOI] [PubMed] [Google Scholar]