Abstract
We studied (1) the effect of primary modulators of phosphate transport, namely the hypophosphataemic mouse mutant (Hyp) and low-phosphorus diet, on alkaline phosphatase activity in mouse renal-cortex brush-border membrane vesicles and (2) the effect of several primary inhibitors of alkaline phosphatase on phosphate transport. Brush-border membrane vesicles from Hyp-mouse kidney had 50% loss of Na+-dependent phosphate transport, but only 18% decrease in alkaline phosphatase activity. The low-phosphorus diet effectively stimulated Na+/phosphate co-transport in brush-border membrane vesicles (+ 118%), but increased alkaline phosphatase activity only slightly (+13%). Levamisole (0.1 mM) and EDTA (1.0 mM) inhibited brush-border membrane-vesicle alkaline phosphatase activity of 82% and 93% respectively, but had no significant effect on Na+/phosphate co-transport. We conclude that alkaline phosphatase does not play a direct role in phosphate transport across the brush-border membrane of mouse kidney.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Booth A. G., Kenny A. J. A rapid method for the preparation of microvilli from rabbit kidney. Biochem J. 1974 Sep;142(3):575–581. doi: 10.1042/bj1420575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eicher E. M., Southard J. L., Scriver C. R., Glorieux F. H. Hypophosphatemia: mouse model for human familial hypophosphatemic (vitamin D-resistant) rickets. Proc Natl Acad Sci U S A. 1976 Dec;73(12):4667–4671. doi: 10.1073/pnas.73.12.4667. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evers J., Murer H., Kinne R. Phenylalanine uptake in isolated renal brush border vesicles. Biochim Biophys Acta. 1976 Apr 5;426(4):598–615. doi: 10.1016/0005-2736(76)90124-3. [DOI] [PubMed] [Google Scholar]
- Felix R., Graham R., Russell G., Fleisch H. The effect of several diphosphonates on acid phosphohydrolases and other lysosomal enzymes. Biochim Biophys Acta. 1976 Apr 8;429(2):429–438. doi: 10.1016/0005-2744(76)90291-6. [DOI] [PubMed] [Google Scholar]
- George S. G., Kenny J. Studies on the enzymology of purified preparations of brush border from rabbit kidney. Biochem J. 1973 May;134(1):43–57. doi: 10.1042/bj1340043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kempson S. A., Dousa T. P. Phosphate transport across renal cortical brush border membrane vesicles from rats stabilized on a normal, high or low phosphate diet. Life Sci. 1979 Mar 5;24(10):881–887. doi: 10.1016/0024-3205(79)90337-0. [DOI] [PubMed] [Google Scholar]
- Kenny A. J., Booth A. G. Microvilli: their ultrastructure, enzymology and molecular organization. Essays Biochem. 1978;14:1–44. [PubMed] [Google Scholar]
- Moog F., Glazier H. S. Phosphate absorption and alkaline phosphatase activity in the small intestine of the adult mouse and of the chick embryo and hatched chick. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):321–336. doi: 10.1016/0300-9629(72)90113-2. [DOI] [PubMed] [Google Scholar]
- Seargeant L. E., Stinson R. A. Evidence that three structural genes code for human alkaline phosphatases. Nature. 1979 Sep 13;281(5727):152–154. doi: 10.1038/281152a0. [DOI] [PubMed] [Google Scholar]
- Shirazi S. P., Colston K. W., Butterworth P. J. Alkaline phosphatase: a possible transport protein for inorganic phosphate. Biochem Soc Trans. 1978;6(5):933–935. doi: 10.1042/bst0060933. [DOI] [PubMed] [Google Scholar]
- Stoll R., Kinne R., Murer H. Effect of dietary phosphate intake on phosphate transport by isolated rat renal brush-border vesicles. Biochem J. 1979 Jun 15;180(3):465–470. doi: 10.1042/bj1800465. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Storelli C., Murer H. On the correlation between alkaline phosphatase and phosphate transport in rat renal brush border membrane vesicles. Pflugers Arch. 1980 Mar;384(2):149–153. doi: 10.1007/BF00584431. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Scriver C. R., McInnes R. R., Glorieux F. H. Renal handling of phosphate in vivo and in vitro by the X-linked hypophosphatemic male mouse: evidence for a defect in the brush border membrane. Kidney Int. 1978 Sep;14(3):236–244. doi: 10.1038/ki.1978.115. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Scriver C. R. Renal adaptation to phosphate deprivation in the Hyp mouse with X-linked hypophosphatemia. Can J Biochem. 1979 Jun;57(6):938–944. doi: 10.1139/o79-114. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Scriver C. R. Renal brush border membrane adaptation to phosphorus deprivation in the Hyp/Y mouse. Nature. 1979 Sep 20;281(5728):225–227. doi: 10.1038/281225a0. [DOI] [PubMed] [Google Scholar]
- Tenenhouse H. S., Scriver C. R. The defect in transcellular transport of phosphate in the nephron is located in brush-border membranes in X-linked hypophosphatemia (Hyp mouse model). Can J Biochem. 1978 Jun;56(6):640–646. doi: 10.1139/o78-096. [DOI] [PubMed] [Google Scholar]
- Van Belle H. Kinetics and inhibition of alkaline phosphatases from canine tissues. Biochim Biophys Acta. 1972 Nov 10;289(1):158–168. doi: 10.1016/0005-2744(72)90118-0. [DOI] [PubMed] [Google Scholar]