Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Sep 15;190(3):771–780. doi: 10.1042/bj1900771

Activation of oxoglutarate dehydrogenase in the kidney in response to acute acidosis.

M Lowry, B D Ross
PMCID: PMC1162158  PMID: 7470078

Abstract

1. Activation by H+ and by Ca2+ of 2-oxoglutarate dehydrogenase extracted from mitochondria of normal or acidotic rat kidney is described. This effect, first shown for the enzyme from heart by McCormack & Denton [Biochem. J. (1979) 180, 533--544], is of a regulatory importance in kidney, in which organ, in contrast with heart, increased flux occurs during acute acidosis. 2. In renal-cortical tubules, 2-oxoglutarate concentration fell within 1 min of decreasing the pH and rose again 1--3 min after increasing the pH of the medium. The extent of the decrease in 2-oxoglutarate was directly related to the decrease in pH. A similar fall in the oxoglutarate concentration in the whole perfused kidney was noted within 5 min of inducing acidosis. 3. In tubules, the rates of gluconeogenesis and ammoniagenesis from 1 mM-glutamine were increased by 64 and 33% respectively on decreasing pH to 7.0, the increase in rates being proportional to the fall in pH between 7.4 and 7.0. 4. The increased rates of renal ammoniagenesis and gluconeogenesis seen in acute acidosis in vitro can be accounted for by the increased activity of 2-oxoglutarate dehydrogenase and the tissue concentrations of 2-oxoglutarate when calculated from the Km determined at normal and acidotic pH. 5. The decrease in 2-oxoglutarate concentration seen in acute acidosis implies a fall in intramitochondrial pH in kidney, and is the result of two phenomena, accelerated disposal via 2-oxoglutarate dehydrogenase and maintenance of near equilibrium of glutamate dehydrogenase.

Full text

PDF
773

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alleyne G. A. Concentrations of metabolic intermediates in kidneys of rats with metabolic acidosis. Nature. 1968 Mar 2;217(5131):847–848. doi: 10.1038/217847a0. [DOI] [PubMed] [Google Scholar]
  2. Alleyne G. A., Flores H., Roobol A. The interrelationship of the concentration of hydrogen ions, bicarbonate ions, carbon dioxide and calcium ions in the regulation of renal gluconeogenesis in the rat. Biochem J. 1973 Nov;136(3):445–453. doi: 10.1042/bj1360445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alleyne G. A. Renal metabolic response to acid-base changes. II. The early effects of metabolic acidosis on renal metabolism in the rat. J Clin Invest. 1970 May;49(5):943–951. doi: 10.1172/JCI106314. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alleyne G. A., Scullard G. H. Renal metabolic response to acid base changes. I. Enzymatic control of ammoniagenesis in the rat. J Clin Invest. 1969 Feb;48(2):364–370. doi: 10.1172/JCI105993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ashcroft S. J., Christie M. R. Effects of glucose on the cytosolic ration of reduced/oxidized nicotinamide-adenine dinucleotide phosphate in rat islets of Langerhans. Biochem J. 1979 Dec 15;184(3):697–700. doi: 10.1042/bj1840697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Baverel G., Lund P. A role for bicarbonate in the regulation of mammalian glutamine metabolism. Biochem J. 1979 Dec 15;184(3):599–606. doi: 10.1042/bj1840599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boyd T. A., Goldstein L. Kidney metabolite levels and ammonia production in acute acid-base alterations in the rat. Am J Physiol. 1979 Mar;236(3):E289–E295. doi: 10.1152/ajpendo.1979.236.3.E289. [DOI] [PubMed] [Google Scholar]
  8. Flodgaard H., Fleron P. Thermodynamic parameters for the hydrolysis of inorganic pyrophosphate at pH 7.4 as a function of (Mg2+), (K+), and ionic strength determined from equilibrium studies of the reaction. J Biol Chem. 1974 Jun 10;249(11):3465–3474. [PubMed] [Google Scholar]
  9. Goldstein L. Pathways of glutamine deamination and their control in the rat kidney. Am J Physiol. 1967 Oct;213(4):983–989. doi: 10.1152/ajplegacy.1967.213.4.983. [DOI] [PubMed] [Google Scholar]
  10. Goldstein L. Relation of glutamate to ammonia production in the rat kidney. Am J Physiol. 1966 Mar;210(3):661–666. doi: 10.1152/ajplegacy.1966.210.3.661. [DOI] [PubMed] [Google Scholar]
  11. Goldstein L. alpha-Ketoglutarate regulation of glutamine transport and deamidation by renal mitochondria. Biochem Biophys Res Commun. 1976 Jun 21;70(4):1136–1141. doi: 10.1016/0006-291x(76)91021-4. [DOI] [PubMed] [Google Scholar]
  12. Goodman A. D., Fuisz R. E., Cahill G. F., Jr Renal gluconeogenesis in acidosis, alkalosis, and potassium deficiency: its possible role in regulation of renal ammonia production. J Clin Invest. 1966 Apr;45(4):612–619. doi: 10.1172/JCI105375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guder W. G., Pürschel S. The Instracellular compartmentation of metabolites in isolated kidney cortex tubules. Int J Biochem. 1980;12(1-2):63–67. doi: 10.1016/0020-711x(80)90044-0. [DOI] [PubMed] [Google Scholar]
  14. Guder W., Wiesner W., Stukowski B., Wieland O. Metabolism of isolated kidney tubules. Oxygen consumption, gluconeogenesis and the effect of cyclic nucleotides in tubules from starved rats. Hoppe Seylers Z Physiol Chem. 1971 Oct;352(10):1319–1328. doi: 10.1515/bchm2.1971.352.2.1319. [DOI] [PubMed] [Google Scholar]
  15. Hems D. A., Brosnan J. T. Effects of metabolic acidosis and starvation on the content of intermediary metabolites in rat kidney. Biochem J. 1971 Jul;123(3):391–397. doi: 10.1042/bj1230391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Krebs H. A., Vinay P. Regulation of renal ammonia production. Med Clin North Am. 1975 May;59(3):595–603. doi: 10.1016/s0025-7125(16)32011-9. [DOI] [PubMed] [Google Scholar]
  17. McCormack J. G., Denton R. M. The effects of calcium ions and adenine nucleotides on the activity of pig heart 2-oxoglutarate dehydrogenase complex. Biochem J. 1979 Jun 15;180(3):533–544. doi: 10.1042/bj1800533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Narins R. G., Relman A. S. Acute effects of acidosis on ammoniagenic pathways in the kidneys of the intact rat. Am J Physiol. 1974 Oct;227(4):946–949. doi: 10.1152/ajplegacy.1974.227.4.946. [DOI] [PubMed] [Google Scholar]
  19. Nishiitsutsuji-Uwo J. M., Ross B. D., Krebs H. A. Metabolic activities of the isolated perfused rat kidney. Biochem J. 1967 Jun;103(3):852–862. doi: 10.1042/bj1030852. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. PITTS R. F. RENAL PRODUCTION AND EXCRETION OF AMMONIA. Am J Med. 1964 May;36:720–742. doi: 10.1016/0002-9343(64)90182-2. [DOI] [PubMed] [Google Scholar]
  21. PORTZEHL H., CALDWELL P. C., RUEEGG J. C. THE DEPENDENCE OF CONTRACTION AND RELAXATION OF MUSCLE FIBRES FROM THE CRAB MAIA SQUINADO ON THE INTERNAL CONCENTRATION OF FREE CALCIUM IONS. Biochim Biophys Acta. 1964 May 25;79:581–591. doi: 10.1016/0926-6577(64)90224-4. [DOI] [PubMed] [Google Scholar]
  22. Radda G. K., Ackerman J. J., Bore P., Sehr P., Wong G. G., Ross B. D., Green Y., Bartlett S., Lowry M. 31P NMR studies on kidney intracellular pH in acute renal acidosis. Int J Biochem. 1980;12(1-2):277–281. doi: 10.1016/0020-711x(80)90084-1. [DOI] [PubMed] [Google Scholar]
  23. Ross B. D., Bullock S. The metabolic fate of glutamine nitrogen in the perfused rat kidney. Biochem J. 1978 Jan 15;170(1):177–179. doi: 10.1042/bj1700177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ross B. D., Epstein F. H., Leaf A. Sodium reabsorption in the perfused rat kidney. Am J Physiol. 1973 Nov;225(5):1165–1171. doi: 10.1152/ajplegacy.1973.225.5.1165. [DOI] [PubMed] [Google Scholar]
  25. Ross B. D., Tannen R. L. Effect of decrease in bicarbonate concentration on metabolism of the isolated perfused rat kidney. Clin Sci (Lond) 1979 Jul;57(1):103–111. doi: 10.1042/cs0570103. [DOI] [PubMed] [Google Scholar]
  26. Simpson D. P., Sherrard D. J. Regulation of glutamine metabolism in vitro by bicarbonate ion and pH. J Clin Invest. 1969 Jun;48(6):1088–1096. doi: 10.1172/JCI106065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tange J. D., Ross B. D., Ledingham J. G. Effects of analgesics and related compounds on renal metabolism in rats. Clin Sci Mol Med. 1977 Nov;53(5):485–492. doi: 10.1042/cs0530485. [DOI] [PubMed] [Google Scholar]
  28. Tannen R. L., Ross B. D. Ammoniagenesis by the isolated perfused rat kidney: the critical role of urinary acidification. Clin Sci (Lond) 1979 Apr;56(4):353–364. doi: 10.1042/cs0560353. [DOI] [PubMed] [Google Scholar]
  29. Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem J. 1967 May;103(2):514–527. doi: 10.1042/bj1030514. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES