Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1980 Oct 1;191(1):71–82. doi: 10.1042/bj1910071

Spectrophotometric assay, solubilization and purification of brain 2':3'-cyclic nucleotide 3'-phosphodiesterase.

Y Nishizawa, T Kurihara, Y Takahashi
PMCID: PMC1162183  PMID: 6258586

Abstract

1. A spectrophotometric assay of 2':3'-cyclic nucleotide 3'-phosphodiesterase (EC 3.1.4.37) based on the use of an acid-base indicator and a buffer having identical pKa values is described. The assay is simple and rapid; it was particularly convenient for monitoring the enzyme activity at various stages of purification. 2. Several proteinases were examined for their ability to solubilize 2':3'-cyclic nucleotide 3'-phosphodiesterase from delipidated brain white matter. Trypsin (EC 3.4.21.4) and elastase (EC 3.4.21.11) appeared to be more effective than the other proteinases examined. Trypsin, however, caused inactivation; elastase was therefore chosen to solubilize 2':3'-cyclic nucleotide 3'-phosphodiesterase. When a partially purified preparation of 2':3'-cyclic nucleotide 3'-phosphodiesterase was treated with elastase, 2':3'-cyclic nucleotide 3'-phosphodiesterase was solubilized nearly quantitatively. Elastatinal, a specific inhibitor of elastase, specifically inhibited the solubilization with elastase. 3. 2':3'-cyclic nucleotide 3'-phosphodiesterase was purified from bovine brain white matter by: (i) delipidation; (ii) solubilization with hexadecyltrimethylammonium bromide; (iii) gel chromatography on Sepharose; (iv) ethanol precipitation and resolubilization by digestion with elastase; (v) chromatography on DEAE-Sephadex; (vi) affinity chromatography on 8-(6-aminohexyl)amino-2'-AMP-Sepharose. 4. The purified enzyme migrated as a single protein band on polyacrylamide-gel electrophoresis at pH 4.3 and on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis; the estimated mol.wt. in the latter electrophoresis was 27000-31000. Gel filtration of the purified enzyme through Sephadex G-150 indicated a mol.wt. of 31000. Therefore the purified enzyme is a monomer protein with a mol.wt. of approx. 30000.

Full text

PDF
82

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN F. W., DAVIS F. F. A specific phosphodiesterase from beef pancreas. Biochim Biophys Acta. 1956 Jul;21(1):14–17. doi: 10.1016/0006-3002(56)90088-9. [DOI] [PubMed] [Google Scholar]
  2. AURICCHIO S., DAHLQVIST A., SEMENZA G. SOLUBILIZATION OF THE HUMAN INTESTINAL DISACCHARIDASES. Biochim Biophys Acta. 1963 Aug 6;73:582–587. doi: 10.1016/0006-3002(63)90329-9. [DOI] [PubMed] [Google Scholar]
  3. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Andrews P. The gel-filtration behaviour of proteins related to their molecular weights over a wide range. Biochem J. 1965 Sep;96(3):595–606. doi: 10.1042/bj0960595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Aoyagi T., Miyata S., Nanbo M., Kojima F., Matsuzaki M. Biological activities of leupeptins. J Antibiot (Tokyo) 1969 Nov;22(11):558–568. doi: 10.7164/antibiotics.22.558. [DOI] [PubMed] [Google Scholar]
  6. Axén R., Porath J., Ernback S. Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature. 1967 Jun 24;214(5095):1302–1304. doi: 10.1038/2141302a0. [DOI] [PubMed] [Google Scholar]
  7. Curthoys N. P., Kuhlenschmidt T. Phosphate-independent glutaminase from rat kidney. Partial purification and identity with gamma-glutamyltranspeptidase. J Biol Chem. 1975 Mar 25;250(6):2099–2105. [PubMed] [Google Scholar]
  8. DAHLQVIST A. Rat-intestinal dextranase. Localization and relation to the other carbohydrases of the digestive tract. Biochem J. 1963 Jan;86:72–76. doi: 10.1042/bj0860072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  10. Danner D. J., Morrison M. Isolation of the thyroid peroxidase complex. Biochim Biophys Acta. 1971 Apr 14;235(1):44–51. doi: 10.1016/0005-2744(71)90031-3. [DOI] [PubMed] [Google Scholar]
  11. Drummond R. J., Hamill E. B., Guha A. Purification and comparison of 2',3'-cyclic nucleotide 3'-phosphohydrolases from bovine brain and spinal cord. J Neurochem. 1978 Oct;31(4):871–878. doi: 10.1111/j.1471-4159.1978.tb00122.x. [DOI] [PubMed] [Google Scholar]
  12. Gertler A., Hofmann T. Acetyl-L-alanyl-L-alanyl-L-alanine methyl ester: a new highly specific elastase substrate. Can J Biochem. 1970 Mar;48(3):384–386. doi: 10.1139/o70-061. [DOI] [PubMed] [Google Scholar]
  13. HEILMANN J., BARROLLIER J., WATZKE E. Beitrag zur Aminosäurebestimmung auf Papierchromatogrammen. Hoppe Seylers Z Physiol Chem. 1957;309(4-6):219–220. [PubMed] [Google Scholar]
  14. Ikehara M., Uesugi S. Studies on nucleosides and nucleotides. 38. Synthesis of 8-bromoadenosine nucleotides. Chem Pharm Bull (Tokyo) 1969 Feb;17(2):348–354. doi: 10.1248/cpb.17.348. [DOI] [PubMed] [Google Scholar]
  15. Kurihara T., Nishizawa Y., Takahashi Y. The use of non-aqueous chloroform/methanol extraction for the delipidation of brain with minimal loss of enzyme activities. Biochem J. 1977 Jul 1;165(1):135–140. doi: 10.1042/bj1650135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kurihara T., Nussbaum J. L., Mandel P. 2',3'-cyclic nucleotide 3'-phosphohydrolase in brains of mutant mice with deficient myelination. J Neurochem. 1970 Jul;17(7):993–997. doi: 10.1111/j.1471-4159.1970.tb02252.x. [DOI] [PubMed] [Google Scholar]
  17. Kurihara T., Nussbaum J. L., Mandel P. 2',3'-cyclic nucleotide 3'-phosphohydrolase in purified myelin from brain of Jimpy and normal young mice. Life Sci II. 1971 Apr 22;10(8):421–429. doi: 10.1016/0024-3205(71)90303-1. [DOI] [PubMed] [Google Scholar]
  18. Kurihara T., Nussbaum J. L., Mandel P. 2',3'-cyclic nucleotide 3'-phosphohydrolase in the brain of the "Jimpy" mouse, a mutant with deficient myelination. Brain Res. 1969 Apr;13(2):401–403. doi: 10.1016/0006-8993(69)90299-6. [DOI] [PubMed] [Google Scholar]
  19. Kurihara T., Takahashi Y. Potentiometric and colorimetric methods for the assay of 2',3'-cyclic nucleotide 3'-phosphohydrolase. J Neurochem. 1973 Mar;20(3):719–727. doi: 10.1111/j.1471-4159.1973.tb00032.x. [DOI] [PubMed] [Google Scholar]
  20. Kurihara T., Tsukada Y. The regional and subcellular distribution of 2',3'-cyclic nucleotide 3'-phosphohydrolase in the central nervous system. J Neurochem. 1967 Dec;14(12):1167–1174. doi: 10.1111/j.1471-4159.1967.tb06164.x. [DOI] [PubMed] [Google Scholar]
  21. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  22. Maestracci D. Enzymic solubilization of the human intestinal brush border membrane enzymes. Biochim Biophys Acta. 1976 May 21;433(3):469–481. doi: 10.1016/0005-2736(76)90274-1. [DOI] [PubMed] [Google Scholar]
  23. Maroux S., Louvard D., Baratti J. The aminopeptidase from hog intestinal brush border. Biochim Biophys Acta. 1973 Sep 15;321(1):282–295. doi: 10.1016/0005-2744(73)90083-1. [DOI] [PubMed] [Google Scholar]
  24. Mosbach K. AMP and NAD as "General Ligands". Methods Enzymol. 1974;34:229–242. doi: 10.1016/s0076-6879(74)34019-0. [DOI] [PubMed] [Google Scholar]
  25. NAUGHTON M. A., SANGER F. Purification and specificity of pancreatic elastase. Biochem J. 1961 Jan;78:156–163. doi: 10.1042/bj0780156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Narayanan A. S., Anwar R. A. The specificity of purified porcine pancreatic elastase. Biochem J. 1969 Aug;114(1):11–17. doi: 10.1042/bj1140011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. PHILLIPS A. H., LANGDON R. G. Hepatic triphosphopyridine nucleotide-cytochrome c reductase: isolation, characterization, and kinetic studies. J Biol Chem. 1962 Aug;237:2652–2660. [PubMed] [Google Scholar]
  28. REISFELD R. A., LEWIS U. J., WILLIAMS D. E. Disk electrophoresis of basic proteins and peptides on polyacrylamide gels. Nature. 1962 Jul 21;195:281–283. doi: 10.1038/195281a0. [DOI] [PubMed] [Google Scholar]
  29. Sigrist H., Ronner P., Semenza G. A hydrophobic form of the small-intestinal sucrase-isomaltase complex. Biochim Biophys Acta. 1975 Oct 17;406(3):433–446. doi: 10.1016/0005-2736(75)90022-x. [DOI] [PubMed] [Google Scholar]
  30. Spatz L., Strittmatter P. A form of cytochrome b5 that contains an additional hydrophobic sequence of 40 amino acid residues. Proc Natl Acad Sci U S A. 1971 May;68(5):1042–1046. doi: 10.1073/pnas.68.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Spatz L., Strittmatter P. A form of reduced nicotinamide adenine dinucleotide-cytochrome b 5 reductase containing both the catalytic site and an additional hydrophobic membrane-binding segment. J Biol Chem. 1973 Feb 10;248(3):793–799. [PubMed] [Google Scholar]
  32. Takesue S., Omura T. Solubilization of NADH-cytochrome b5 reductase from liver microsomes by lysosomal digestion. J Biochem. 1970 Feb;67(2):259–266. doi: 10.1093/oxfordjournals.jbchem.a129249. [DOI] [PubMed] [Google Scholar]
  33. Umezawa H., Aoyagi T., Okura A., Morishima H., Takeuchi T. Letter: Elastatinal, a new elastase inhibitor produced by actinomycetes. J Antibiot (Tokyo) 1973 Dec;26(12):787–789. doi: 10.7164/antibiotics.26.787. [DOI] [PubMed] [Google Scholar]
  34. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES